\((\frac{1975}{1976}+\frac{2010}{2011}+\frac{1963}{1968})\times(\frac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2018

\(\left(\frac{1975}{1976}+\frac{2010}{2011}+\frac{1963}{1968}\right).\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{12}\right)\)

\(=\left(\frac{1975}{1976}+\frac{2010}{2011}+\frac{1963}{1968}\right).0\)

\(=0\)

5 tháng 4 2018

\(\left(\frac{1975}{1976}+\frac{2010}{2011}+\frac{1963}{1968}\right).\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{12}\right)\)

\(=\left(\frac{1975}{1976}+\frac{2010}{2011}+\frac{1963}{1968}\right).\left(\frac{4}{12}-\frac{3}{12}-\frac{1}{12}\right)\)

\(=\left(\frac{1975}{1976}+\frac{2010}{2011}+\frac{1963}{1968}\right).0\)

\(=0\)

23 tháng 3 2018

\(\frac{9620}{979}\)

11 tháng 8 2017

a, 1,5+1-0,75/2,5+5\3-1,25

=15\10+1-75\100/25\10+5\3-125\100

=7\4/35/12

20 tháng 7 2020

5A=\(\frac{1}{5}+\frac{2}{5^2}...+\frac{n}{5^n}...+\frac{11}{5^{11}}\)

=>4A=5A-A=\(\frac{1}{5}+\frac{1}{5^2}...+\frac{1}{5^{11}}-\frac{11}{5^{12}}\)

=>20A=\(1+\frac{1}{5}+...+\frac{1}{5^{10}}-\frac{11}{5^{11}}\)

=>16A=20A-4A=\(1-\frac{1}{5^{11}}+\frac{11}{5^{12}}-\frac{11}{5^{11}}\)

Mà \(1-\frac{1}{5^{11}}< 1\),\(\frac{11}{5^{12}}-\frac{11}{5^{11}}< 0\)

=>16A<1

Do đó: A<1/16(đpcm)

22 tháng 2 2023

cho địt t trả lời

 

9 tháng 4 2018

\(4\frac{3}{4}+\left(-0,37\right)+\frac{1}{8}+\left(-1,28\right)+\left(-2,5\right)+3\frac{1}{12}\)

\(=\frac{19}{4}+-\frac{37}{100}+\frac{1}{8}+-\frac{128}{100}+-\frac{250}{100}+\frac{37}{12}\)

\(=\left(\frac{19}{4}+\frac{1}{8}+\frac{37}{12}\right)-\left(\frac{37}{100}+\frac{128}{100}+\frac{250}{100}\right)\)

\(=\left(\frac{114}{24}+\frac{3}{24}+\frac{74}{24}\right)-\frac{415}{100}\)

\(=\frac{191}{24}-\frac{415}{100}\)

\(=\frac{457}{120}\)

Tham khảo nha !!! 

9 tháng 4 2018

\(4\frac{3}{4}+\left(-0,37\right)+\frac{1}{8}+\left(-1,28\right)+\left(-2,5\right)+3\frac{1}{12}\)

\(=\frac{19}{4}+\frac{-37}{100}+\frac{1}{8}+\frac{-32}{25}+\frac{-5}{2}+\frac{37}{12}\)

\(=\left(\frac{19}{4}+\frac{1}{8}+\frac{-5}{2}\right)+\left(\frac{-37}{100}+\frac{-32}{25}\right)+\frac{37}{12}\)

\(=\frac{19}{8}+\frac{-33}{20}+\frac{37}{12}\)

\(=\frac{29}{40}+\frac{37}{12}\)

\(=\frac{457}{120}\)

12 tháng 7 2017

a)\(\frac{2}{3}+\frac{3}{4}+\frac{5}{6}\)

\(=\frac{8+9+10}{12}\)

\(=\frac{27}{12}=\frac{9}{4}\)

b)\(\frac{15}{8}-\frac{7}{12}+\frac{5}{6}\)

\(=\frac{45-14+20}{24}\)

\(=\frac{51}{24}=\frac{17}{8}\)

2)

a)\(\frac{2}{5}+\frac{7}{13}+\frac{3}{5}+\frac{1}{7}\)

\(=\frac{2}{5}+\frac{3}{5}+\frac{7}{13}+\frac{1}{7}\)

\(=1+\frac{7}{13}+\frac{1}{7}\)

\(=\frac{20}{13}+\frac{1}{7}\)

\(=\frac{153}{91}\)

Tí tớ trả lời tiếp

31 tháng 3 2017

\(=\frac{16}{3}x\frac{30}{7}=\frac{480}{21}=\frac{160}{7}\)

\(\frac{33}{5}:\frac{21}{4}=\frac{33}{5}x\frac{4}{21}=\frac{132}{105}=\frac{44}{35}\)

31 tháng 3 2017

a) \(5\frac{1}{3}.4\frac{2}{7}=\frac{16}{3}.\frac{30}{7}=\frac{160}{7}\)

b) \(6\frac{3}{5}:5\frac{1}{4}=\frac{33}{5}:\frac{21}{4}=\frac{33}{5}.\frac{4}{21}=\frac{44}{35}\)

1 tháng 6 2018

a/ \(A=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+........+\frac{99}{100!}\)

\(\Leftrightarrow A=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+......+\frac{100-1}{100!}\)

\(\Leftrightarrow A=\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+.....+\frac{100}{100!}-\frac{1}{100!}\)

\(\Leftrightarrow A=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+....+\frac{1}{99!}-\frac{1}{100!}\)

\(\Leftrightarrow A=1-\frac{1}{100!}\)

b/ \(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+.....+\frac{1}{98.99.100}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+.....+\frac{1}{98.99}-\frac{1}{99.100}\)

\(=\frac{1}{1.2}-\frac{1}{99.100}\)

\(=\frac{1}{2}-\frac{1}{9900}\)