Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{3+\sqrt{5}}.\sqrt{3-\sqrt{5}}=\sqrt{3^2-\left(\sqrt{5}\right)^2}=\sqrt{4}=2\)
\(B=\sqrt{150.27.96}=\sqrt{150}.\sqrt{27}.\sqrt{96}=5\sqrt{6}.3\sqrt{3}.4\sqrt{6}=360\sqrt{3}\)
\(C=\left(\sqrt{27}+\sqrt{48}\right)^2-\left(\sqrt{27}-\sqrt{48}\right)^2\)\(=\left[\left(\sqrt{27}+\sqrt{48}-\sqrt{27}+\sqrt{48}\right)\left(\sqrt{27}+\sqrt{48}+\sqrt{27}-\sqrt{48}\right)\right]\)
\(=2\sqrt{27}.2\sqrt{48}=2.3\sqrt{3}.2.4\sqrt{3}=144\)
\(D=\sqrt{137^2-88^2}-\sqrt{192^2-111^2}=\sqrt{\left(137+88\right)\left(137-88\right)}-\sqrt{\left(192+111\right)\left(192-111\right)}\)
\(=\sqrt{225.49}-\sqrt{303.81}=15.7-9.\sqrt{303}=9\left(\frac{35}{3}-\sqrt{303}\right)\)
\(E=\sqrt{\frac{225}{4}.\frac{81}{25}.\frac{49}{64}}=\frac{15}{2}.\frac{9}{5}.\frac{7}{8}=\frac{189}{16}\)
\(F=\sqrt{\frac{27}{25}}.\sqrt{\frac{49}{189}}.\sqrt{\frac{700}{99}}=\frac{3\sqrt{3}}{5}.\frac{7}{3\sqrt{21`}}.\frac{10\sqrt{7}}{3\sqrt{11}}=\frac{14}{3\sqrt{11}}\)
\(H=\sqrt{105}.\left[\sqrt{\frac{15}{7}}-\sqrt{\frac{35}{5}}+\sqrt{\frac{21}{5}}\right]=\sqrt{105}.\left[\sqrt{\frac{15}{7}}-\sqrt{7}+\sqrt{\frac{21}{5}}\right]\)
\(=\sqrt{105}.\left[\frac{\sqrt{75}-\sqrt{49}+\sqrt{147}}{\sqrt{35}}\right]=\sqrt{3}\left(12\sqrt{3}-7\right)=36-7\sqrt{3}\)
\(K=\sqrt{64.14.21.54}-\sqrt{35.45.12}=8.\sqrt{14}.\sqrt{21}.3\sqrt{6}-\sqrt{35}.3\sqrt{5}.2\sqrt{3}\)
\(=24.\sqrt{14.21.6}-6\sqrt{35.5.3}=24.42-30\sqrt{21}=30\left(\frac{168}{5}-\sqrt{21}\right)\)
a) \(\left(3+1\sqrt{6}-\sqrt{33}\right)\left(\sqrt{22}+\sqrt{6}+4\right)\)
\(=\sqrt{3}\left(\sqrt{3}+2\sqrt{2}-\sqrt{11}\right).\sqrt{2}\left(\sqrt{11}+\sqrt{3}+2\sqrt{2}\right)\)
\(=\sqrt{6}\left(\sqrt{3}+2\sqrt{2}-\sqrt{11}\right)\left(\sqrt{3}+2\sqrt{2}+\sqrt{11}\right)\)
\(=\sqrt{6}\left[\left(\sqrt{3}+2\sqrt{2}\right)^2-11\right]=\sqrt{6}\left(11+4\sqrt{6}-11\right)=\sqrt{6}.4\sqrt{6}=6.4=24\)
b) \(\left(\frac{1}{5-2\sqrt{6}}+\frac{2}{5+2\sqrt{6}}\right)\left(15+2\sqrt{6}\right)=\left(\frac{5+2\sqrt{6}+10-4\sqrt{6}}{5^2-\left(2\sqrt{6}\right)^2}\right)\left(15+2\sqrt{6}\right)\)
\(=\left(15-2\sqrt{6}\right)\left(15+2\sqrt{6}\right)=15^2-24=201\)
C) \(\left(\frac{4}{3}.\sqrt{3}+\sqrt{2}+\sqrt{3\frac{1}{3}}\right)\left(\sqrt{1,2}+\sqrt{2}-4\sqrt{\frac{1}{5}}\right)\)
\(=\left(\frac{4}{\sqrt{3}}+\frac{\sqrt{6}}{\sqrt{3}}+\frac{\sqrt{10}}{\sqrt{3}}\right)\left(\frac{\sqrt{6}}{\sqrt{5}}+\frac{\sqrt{10}}{\sqrt{5}}-\frac{4}{\sqrt{5}}\right)\)
\(=\frac{1}{\sqrt{15}}\left(\sqrt{6}+\sqrt{10}+4\right)\left(\sqrt{6}+\sqrt{10}-4\right)=\frac{1}{\sqrt{15}}\left[\left(\sqrt{6}+\sqrt{10}\right)^2-16\right]\)
\(=\frac{1}{\sqrt{15}}\left(16+4\sqrt{15}-16\right)=\frac{4\sqrt{15}}{\sqrt{15}}=4\)
d) \(\sqrt{\left(1-\sqrt{1989}\right)^2}.\sqrt{1990+2\sqrt{1989}}=\sqrt{\left(1-\sqrt{1989}\right)^2}.\sqrt{1989+2\sqrt{1989}+1}\)
\(=\sqrt{\left(1-\sqrt{1989}\right)^2}.\sqrt{\left(\sqrt{1989}+1\right)^2}=\left(\sqrt{1989}-1\right)\left(\sqrt{1989}+1\right)=1989-1=1988\)
e) \(\frac{a-\sqrt{ab}+b}{a\sqrt{a}+b\sqrt{b}}-\frac{1}{a-b}=\frac{a-\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}-\frac{1}{a-b}=\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}-\frac{1}{a-b}=\frac{\sqrt{a}-\sqrt{b}-1}{a-b}\)
2.+ \(\left(2n+1\right)^2=4n^2+4n+1>4n^2+4n\)
\(\Rightarrow2n+1>\sqrt{4n\left(n+1\right)}=2\sqrt{n\left(n+1\right)}\)
+ \(\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\left(2n+1\right)\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{2n+1}< \frac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n\left(n+1\right)}}=\frac{1}{2}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Do đó : \(A< \frac{1}{2}\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{48}}-\frac{1}{\sqrt{49}}\right)\)
\(\Rightarrow A< \frac{1}{2}\)
1. + \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\left(n+1\right)-n}{\left(n+1\right)\sqrt{n}}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\left(n+1\right)\sqrt{n}}\)
\(< \frac{\left(\sqrt{n+1}-\sqrt{n}\right)\cdot2\sqrt{n+1}}{\sqrt{n}\left(n+1\right)}=2\cdot\frac{n+1-\sqrt{n\left(n+1\right)}}{\left(n+1\right)\sqrt{n}}=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Do đó : \(A< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\right)\)
\(\Rightarrow A< 2\)
Bài 2 tạm thời chưa nghĩ ra :))
Bài 1:
a: \(=\sqrt{32.4}=\dfrac{9}{5}\sqrt{10}\)
b: \(=\sqrt{5\cdot5\cdot7\cdot7\cdot11\cdot11}=5\cdot7\cdot11=385\)
c: \(=5-2\sqrt{6}\)
d: \(=18-1=17\)
e: \(=3\sqrt{2}-2\sqrt{3}+7\sqrt{3}-7\sqrt{2}=-4\sqrt{2}+5\sqrt{3}\)
\(a,\frac{2}{\sqrt{2}-1}-\frac{2}{\sqrt{2}+1}=\frac{2\left(\sqrt{2}+1\right)-2\left(\sqrt{2}-1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\)
\(=\frac{2\sqrt{2}+2-2\sqrt{2}+2}{\sqrt{2}^2-1^2}=\frac{4}{2-1}=4\)
\(b,\sqrt{6+4\sqrt{2}}+\sqrt{6-4\sqrt{2}}\)
\(=\sqrt{4+2.2.\sqrt{2}+2}+\sqrt{4-2.2.\sqrt{2}+2}\)
\(=\sqrt{2^2+2.2.\sqrt{2}+\sqrt{2}^2}+\sqrt{2^2-2.2.\sqrt{2}+\sqrt{2}^2}\)
\(=\sqrt{\left(2+\sqrt{2}\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}\)
\(=|2+\sqrt{2}|+|2-\sqrt{2}|=2+2=4\)
\(c,\sqrt{9+4\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)
\(=\sqrt{4+2.2.\sqrt{5}+5}+\sqrt{4-2.2.\sqrt{5}+5}\)
\(=\sqrt{2^2+2.2.\sqrt{5}+\sqrt{5}^2}+\sqrt{2^2-2.2.\sqrt{5}+\sqrt{5}^2}\)
\(=\sqrt{\left(2+\sqrt{5}\right)^2}+\sqrt{\left(2-\sqrt{5}\right)^2}\)
\(=|2+\sqrt{5}|+|2-\sqrt{5}|=2+\sqrt{5}+\sqrt{5}-2=2\sqrt{5}\)
câu d bạn cứ nhân bình thường
a: \(=1-\sqrt{2}+\sqrt{2}=1\)
b: \(=\sqrt[3]{4}\cdot\sqrt[3]{1-\sqrt{3}}\cdot\sqrt[3]{1+\sqrt{3}}\)
\(=\sqrt[3]{4}\cdot\sqrt[3]{2}=2\)
a) \(\sqrt{49}+\sqrt{25}-4\cdot0,25\)
\(=7+5-1=11\)
b) \(\sqrt{\frac{1}{9}}\cdot\sqrt{0,81}\cdot\sqrt{0,9}\)
\(=\frac{1}{3}\cdot\frac{9}{10}\cdot\frac{3\sqrt{10}}{10}\)
\(=\frac{9\sqrt{10}}{100}\)
c) \(\sqrt{6,4\cdot2400\cdot0,6}\)
\(=\sqrt{64\cdot36\cdot4}\)
\(=8\cdot6\cdot2=96\)
d) \(\sqrt{26^2-24^2}=\sqrt{\left(26-24\right)\left(26+24\right)}\)
\(=\sqrt{2\cdot50}=\sqrt{100}=10\)