Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)
\(\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\frac{4x}{2\left(x+1\right)\left(x-3\right)}\)
\(x\left(x+1\right)+x\left(x-3\right)=4x\)
\(x^2+x+x^2-3x=4x\)
\(2x^2-2x=4x\)
\(2x^2-2x-4x=0\)
\(2x\left(x-3\right)=0\)
\(2x=0\Leftrightarrow x=0\)
hoặc
\(x-3=0\Leftrightarrow x=3\)
b) \(ĐKXĐ:x\ne\pm4\)
\(5+\frac{96}{x^2-16}=\frac{2x-1}{x+4}-\frac{3x-1}{4-x}\)
\(\Leftrightarrow5+\frac{96}{x^2-16}=\frac{2x-1}{x+4}+\frac{3x-1}{x-4}\)
\(\Leftrightarrow\frac{5\left(x^2-16\right)}{x^2-16}+\frac{96}{x^2-16}=\frac{\left(2x-1\right)\left(x-4\right)}{x^2-16}+\frac{\left(3x-1\right)\left(x+4\right)}{x^2-16}\)
\(\Rightarrow5\left(x^2-16\right)+96=\left(2x-1\right)\left(x-4\right)+\left(3x-1\right)\left(x+4\right)\)
\(\Leftrightarrow5x^2-80+96=2x^2-9x+4+3x^2+11x-4\)
\(\Leftrightarrow5x^2-2x^2-3x^2+9x-11x=4-4+80-96\)
\(\Leftrightarrow-2x=-16\)\(\Leftrightarrow x=8\)( thoả mãn ĐKXĐ )
Vậy tập nghiệm của phương trình là: \(S=\left\{8\right\}\)
a) ĐKXĐ: \(x;y\ne0,x\ne\frac{y}{2},y\ne\frac{x}{2}\)
\(\frac{y}{2x^2-xy}+\frac{4x}{y^2-2xy}=\frac{y}{x\left(2x-y\right)}-\frac{4x}{y\left(2x-y\right)}\)\(=\frac{y^2-4x^2}{xy\left(2x-y\right)}=\frac{\left(y-2x\right)\left(y+2x\right)}{xy\left(2x-y\right)}\)
\(=\frac{-\left(y+2x\right)}{xy}\)
b) ĐKXĐ: \(x\ne2;x\ne-2\)
\(\frac{1}{x+2}+\frac{3}{x^2-4}+\frac{x-14}{\left(x^2+4x+4\right)\left(x-2\right)}\)\(=\frac{1}{x+2}+\frac{3}{\left(x-2\right)\left(x+2\right)}+\frac{x-14}{\left(x+2\right)^2\left(x-2\right)}\)
\(=\frac{\left(x-2\right)\left(x+2\right)+3\left(x+2\right)+x-14}{\left(x+2\right)^2\left(x-2\right)}\)\(=\frac{x^2-4+3x+6+x-14}{\left(x+2\right)^2\left(x-2\right)}\)\(=\frac{x^2+4x-12}{\left(x+2\right)^2\left(x-2\right)}=\frac{\left(x^2+4x+4\right)-16}{\left(x+2\right)^2\left(x-2\right)}\)\(=\frac{\left(x+2\right)^2-16}{\left(x+2\right)^2\left(x-2\right)}=\frac{\left(x+2-4\right)\left(x+2+4\right)}{\left(x+2\right)^2\left(x-2\right)}\)\(=\frac{\left(x-2\right)\left(x+6\right)}{\left(x+2\right)^2\left(x-2\right)}=\frac{x+6}{\left(x+2\right)^2}\)
a) \(\left(3-2x\right)\left(x+1\right)+x\left(2x-1\right)=3x+3-2x^2-2x+2x^2-x=3\)
b) \(\frac{x^2+9}{x^2+3x}+\frac{6}{x+3}=\frac{x^2+9}{x\left(x+3\right)}+\frac{6x}{x\left(x+3\right)}=\frac{x^2+6x+9}{x\left(x+3\right)}=\frac{\left(x+3\right)^2}{x\left(x+3\right)}=\frac{x+3}{x}\)
c)\(\frac{2+x}{2-x}+\frac{4x^2}{4-x^2}+\frac{x-2}{2+x}=\frac{\left(x+2\right)^2}{\left(2-x\right)\left(2+x\right)}+\frac{4x^2}{\left(2-x\right)\left(2+x\right)}+\frac{-\left(x-2\right)^2}{\left(2+x\right)\left(2-x\right)}\)
\(=\frac{x^2+4x+4+4x^2-x^2+4x-4}{\left(2-x\right)\left(2+x\right)}=\frac{4x^2+8x}{\left(x+2\right)\left(2-x\right)}=\frac{4x\left(x+2\right)}{\left(x+2\right)\left(2-x\right)}=\frac{4x}{2-x}\)
d) \(\left(x^3+4x^2+6x+4\right):\left(x+2\right)\)
\(=\left(x^3+2x^2+2x^2+4x+2x+4\right):\left(x+2\right)\)
\(=\left[x^2\left(x+2\right)+2x\left(x+2\right)+2\left(x+2\right)\right]:\left(x+2\right)\)
\(=\left(x^2+2x+2\right)\left(x+2\right):\left(x+2\right)=x^2+2x+2\)
cau a : (3x^2y-6xy+9x)(-4/3xy)
=-4/3xy.3x^2y+4/3xy.6xy-4/3xy.9x
=-4x+8-8y
cau b : (1/3x+2y)(1/9x^2-2/3xy+4y^2)
=(1/3)^3-2/9x^2y+8y^3+4/3xy^2+2/9x^2y-4/3xy^2+8y^3
=(1/3)^3 + (2y)^3x-2
cau c : (x-2)(x^2-5x+1)+x(x^2+11)
=x^3-5x^2+x-2x^2+10x-2+x^3+11x
=2x^3-7x^2+22x-2
cau d := x^3 + 6xy^2 -27y^3
cau e := x^3 + 3x^2 -5x - 3x^2y - 9xy = 15y
cau f := x^2-2x+2x -4-2x-1
= x(x-2)-5
\(\frac{3\left(x+1\right)}{x+2}-\frac{3x-6}{x^2-4}\)
\(=\frac{3\left(x+1\right)}{x+2}-\left(\frac{3x-6}{x^2-4}\right)\)
\(=\frac{3x^2-6x^2-12x+24}{x^3+2x^2-4x-8}\)
\(=\frac{3\left(x+2\right)\left(x-2\right)\left(x-2\right)}{\left(x+2\right)\left(x+2\right)\left(x-2\right)}\)
\(=\frac{3x-6}{x+2}\)
\(\frac{x^2+4x+4}{1-x}.\frac{\left(1-x\right)^2}{3\left(x+2\right)^3}\)
\(=\frac{x^2+4x+4}{1-x}.\left[\frac{\left(1-x\right)^2}{3\left(x+2\right)^3}\right]\)
\(=\frac{x^4+2x^3-3x^2-4x+4}{-3x^4-15x^3-18x^2+12x+24}\)
\(=\frac{\left(x-1\right)\left(x-1\right)\left(x+2\right)\left(x+2\right)}{3\left(-x+1\right)\left(x+2\right)\left(x+2\right)\left(x+2\right)}\)
\(=\frac{-x+1}{3x+6}\)
a) \(\frac{x^3+4x^2+x-2}{x+1}=\frac{\left(x+1\right)\left(x^2+3x-2\right)}{x+1}=x^2+3x-2\)
b) \(\frac{x-3}{2x-2}+\frac{1}{x-1}=\frac{x^2-2x+1}{2x^2-4x+2}=\frac{\left(x-1\right)\left(x-1\right)}{2\left(x-1\right)\left(x-1\right)}=\frac{1}{2}\)