\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\s...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ưu tiên phương pháp bình phương :

a) \(\left(4+\sqrt{15}\right)^2\left(\sqrt{10}-\sqrt{6}\right)^2\left(\sqrt{4-\sqrt{15}}\right)^2\)

\(=\left(4+\sqrt{15}\right)^2\left(4-\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)^2\)

Tính ra kết quả nhớ căn đó

b) Phương pháp trục căn thức :

\(\frac{\sqrt{3+\sqrt{5}}\sqrt{3-\sqrt{5}}}{\sqrt{3-\sqrt{5}}}-\frac{\sqrt{3-\sqrt{5}}\sqrt{3+\sqrt{5}}}{\sqrt{3+\sqrt{5}}}-\sqrt{2}\)

Trên tử có hàng đẳng thức . bạn tự quy động là ra 

3 tháng 7 2017

mình vẫn chưa hiểu câu a

NV
13 tháng 3 2020

\(A=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8-2\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)^2=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(=2\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)=2\left(16-15\right)=2\)

\(B=\frac{1}{\sqrt{2}}\left(\left(3-\sqrt{5}\right)\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\left(3+\sqrt{5}\right)\right)\)

\(=\frac{1}{\sqrt{2}}\left(\left(3-\sqrt{5}\right)\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\left(3+\sqrt{5}\right)\right)\)

\(=\frac{1}{\sqrt{2}}\left(\left(3-\sqrt{5}\right)\left(\sqrt{5}+1\right)+\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\right)\)

\(=\frac{1}{\sqrt{2}}\left(2\sqrt{5}-2+2\sqrt{5}+2\right)=\frac{4\sqrt{5}}{\sqrt{2}}=2\sqrt{10}\)

\(C=\frac{1}{\sqrt{2}}\left(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}-2\right)\)

\(=\frac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}-2\right)\)

\(=\frac{1}{\sqrt{2}}\left(\sqrt{5}+1-\sqrt{5}+1-2\right)=0\)

NV
13 tháng 3 2020

\(D=\frac{1}{\sqrt{2}}\left(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}+\sqrt{14}\right)\)

\(=\frac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}+\sqrt{14}\right)\)

\(=\frac{1}{\sqrt{2}}\left(\sqrt{7}-1-\sqrt{7}-1+\sqrt{14}\right)\)

\(=\frac{1}{\sqrt{2}}\left(-2+\sqrt{14}\right)=\sqrt{7}-\sqrt{2}\)

\(E=\frac{1}{\sqrt{2}}\left(\sqrt{13+2\sqrt{12}}+\sqrt{13-2\sqrt{12}}\right)+2\sqrt{6}\)

\(=\frac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{12}+1\right)^2}+\sqrt{\left(\sqrt{12}-1\right)^2}\right)+2\sqrt{6}\)

\(=\frac{1}{\sqrt{2}}\left(\sqrt{12}+1+\sqrt{12}-1\right)+2\sqrt{6}\)

\(=\sqrt{24}+2\sqrt{6}=4\sqrt{6}\)

12 tháng 11 2017

\(f,\sqrt{\dfrac{3-\sqrt{5}}{2-\sqrt{3}}}\\ =\sqrt{\dfrac{\left(3-\sqrt{5}\right)\left(2+\sqrt{3}\right)}{4-3}}\\ =\sqrt{\left(3-\sqrt{5}\right)\left(2+\sqrt{3}\right)}\\ =\sqrt{\dfrac{\left(6-2\sqrt{5}\right)\left(4+2\sqrt{3}\right)}{4}}\\ =\dfrac{\left(\sqrt{5}-1\right)\left(\sqrt{3}+1\right)}{2}\)

12 tháng 11 2017

\(a,\sqrt{3+\sqrt{5}}\left(\sqrt{10}+\sqrt{2}\right)\left(3-\sqrt{5}\right)\\ =\sqrt{3+\sqrt{5}}.\sqrt{3-\sqrt{5}}.\sqrt{3-\sqrt{5}}.\sqrt{2}\left(\sqrt{5}+1\right)\\ =\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}.\sqrt{6-2\sqrt{5}}.\left(\sqrt{5}+1\right)\\ =\sqrt{9-5}.\sqrt{\left(\sqrt{5}-1\right)^2}.\left(\sqrt{5}+1\right)\\ =2\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)\\ =2.4\\ =8\)

27 tháng 8 2017

\(\left(\sqrt{4+\sqrt{15}}\right)^2\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)\sqrt{4-\sqrt{15}}=\left(\sqrt{4+\sqrt{15}}\sqrt{4-\sqrt{15}}\right)\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)\sqrt{4+\sqrt{15}}=\sqrt{8+2\sqrt{15}}\left(\sqrt{5}-\sqrt{3}\right)=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=2\)

a) Ta có: \(\left(4+\sqrt{5}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)

\(=\left(4+\sqrt{5}\right)\cdot\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{4-\sqrt{15}}\)

\(=\left(4+\sqrt{5}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)

\(=\left(4+\sqrt{5}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\)

\(=\left(4+\sqrt{5}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(=\left(4+\sqrt{5}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)^2\)

\(=\left(4+\sqrt{5}\right)\left(8-2\sqrt{15}\right)\)

\(=32-8\sqrt{15}+8\sqrt{5}-2\sqrt{75}\)

b) Ta có: \(\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)

\(=\sqrt{6-2\sqrt{5}}\cdot\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\)

\(=\sqrt{\left(\sqrt{5}-1\right)^2}\cdot\left(\sqrt{5}-1\right)\cdot\left(3+\sqrt{5}\right)\)

\(=\left(\sqrt{5}-1\right)^2\cdot\left(\sqrt{5}+3\right)\)

\(=\left(6-2\sqrt{5}\right)\cdot\left(\sqrt{5}+3\right)\)

\(=2\cdot\left(3-\sqrt{5}\right)\cdot\left(3+\sqrt{5}\right)\)

\(=2\cdot\left(9-5\right)=2\cdot4=8\)

Bài 2: Thực hiện phép tínha) \(\sqrt{5}-\sqrt{48}+5\sqrt{27}-\sqrt{45}\)b) \(\left(\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{2}-1\right)\)c) \(3\sqrt{50}-2\sqrt{75}-4\frac{\sqrt{54}}{\sqrt{3}}-3\sqrt{\frac{1}{3}}\)d) \(\sqrt{\left(\sqrt{3}-3\right)^2}+\sqrt{4-2\sqrt{3}}\)e) \(\sqrt{48-2\sqrt{135}}-\sqrt{45}+\sqrt{18}\)f) \(\frac{5\sqrt{2}-2\sqrt{5}}{\sqrt{5}-\sqrt{2}}+\frac{6}{2-\sqrt{10}}-\frac{20}{\sqrt{10}}\)Bài 3: Thực hiện phép...
Đọc tiếp

Bài 2: Thực hiện phép tính

a) \(\sqrt{5}-\sqrt{48}+5\sqrt{27}-\sqrt{45}\)

b) \(\left(\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{2}-1\right)\)

c) \(3\sqrt{50}-2\sqrt{75}-4\frac{\sqrt{54}}{\sqrt{3}}-3\sqrt{\frac{1}{3}}\)

d) \(\sqrt{\left(\sqrt{3}-3\right)^2}+\sqrt{4-2\sqrt{3}}\)

e) \(\sqrt{48-2\sqrt{135}}-\sqrt{45}+\sqrt{18}\)

f) \(\frac{5\sqrt{2}-2\sqrt{5}}{\sqrt{5}-\sqrt{2}}+\frac{6}{2-\sqrt{10}}-\frac{20}{\sqrt{10}}\)

Bài 3: Thực hiện phép tính

a) \(\sqrt{9-4\sqrt{5}}\)

b) \(2\sqrt{3}+\sqrt{48}-\sqrt{75}-\sqrt{243}\)

c) \(\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)

d) \(\sqrt{3+2\sqrt{2}}-\sqrt{6-4\sqrt{2}}\)

e) \(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}\)

f*) \(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)

Bài 4: Rút gọn

a) \(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}\)

b) \(\left(2\sqrt{3}+\sqrt{4}\right)\left(\sqrt{3}-2\right)\)

c) \(\sqrt{3+2\sqrt{2}}+\sqrt{\left(\sqrt{2}-2\right)^2}\)

d) \(\sqrt{4-\sqrt{15}}-\sqrt{4+\sqrt{15}}+\sqrt{6}\)

e) \(\left(\frac{5-\sqrt{5}}{\sqrt{5}}-2\right)\left(\frac{4}{1+\sqrt{5}}+4\right)\)

f) \(\frac{1}{5}\sqrt{50}-2\sqrt{96}-\frac{\sqrt{30}}{\sqrt{15}}+12\sqrt{\frac{1}{6}}\)

0