Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b,\(\frac{2}{3}\)+\(\frac{1}{3}\).(\(\frac{-2}{3}\)+\(\frac{5}{6}\)):\(\frac{2}{3}\)
=\(\frac{2}{3}\)+\(\frac{1}{3}\).(\(\frac{-4}{6}\)+\(\frac{5}{6}\)):\(\frac{2}{3}\)
=\(\frac{2}{3}\)+\(\frac{1}{3}\).\(\frac{1}{6}\).\(\frac{3}{2}\)
=\(\frac{2}{3}\)+\(\frac{1}{18}\).\(\frac{3}{2}\)
=\(\frac{2}{3}\)+\(\frac{1}{6}\).\(\frac{1}{2}\)
=\(\frac{2}{3}\)+\(\frac{1}{12}\)
=\(\frac{8}{12}\)+\(\frac{1}{12}\)
=\(\frac{9}{12}\)=\(\frac{3}{4}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Thực hiện phép tính
a ) \(\frac{2}{5}+\frac{-1}{6}-\frac{3}{4}-\frac{-2}{3}\)
= \(\frac{2}{5}+\frac{-1}{6}+\frac{-3}{4}+\frac{2}{3}\)
= \(\left(\frac{2}{5}+\frac{-3}{4}\right)+\left(\frac{-1}{6}+\frac{2}{3}\right)\)
= \(\left(\frac{8}{20}+\frac{-15}{20}\right)+\left(\frac{-1}{6}+\frac{4}{6}\right)\)
= \(\left(\frac{8+\left(-15\right)}{20}\right)+\left(\frac{\left(-1\right)+4}{6}\right)\)
= \(\frac{-7}{20}+\frac{1}{2}\)
= \(\frac{-7}{20}+\frac{10}{20}=\frac{\left(7\right)+10}{20}=\frac{3}{20}\)
tk mk nha
đang âm rất nhiều rồi , giúp nha !!!!!
a, \(\frac{2}{5}.\frac{1}{3}-\frac{2}{15}:\frac{1}{5}+\frac{3}{5}.\frac{1}{3}\)
\(=\frac{1}{3}.\left(\frac{2}{5}+\frac{3}{5}\right)-\frac{2}{15}.5\)
\(=\frac{1}{3}.1-\frac{2}{3}\)
\(=\frac{1}{3}-\frac{2}{3}\)
\(=\frac{-1}{3}\)
b, \(\left(6-2\frac{4}{5}\right).3\frac{1}{8}+1\frac{3}{8}:\frac{1}{4}\)
\(=\left(6-\frac{14}{5}\right).\frac{25}{8}+\frac{11}{8}.4\)
\(=\frac{16}{5}.\frac{25}{8}+\frac{11}{2}\)
\(=10+\frac{11}{2}\)
\(=\frac{31}{2}\)
1/3×(3/5+2/5)-2/15×1/5
1/3×1-2/15×1/5
1/3-2/15×1/5
1/3-2/75
25/75-2/75
23/75
(6-14/5)×25/8-11/8:4/1
16/5×25/8-11/8:4/1
10/1-11/8:4/1
10/1-11/8×1/4
10/1-11/32
320/32-11/32
309/32
1/22+1/32+1/42+...+1/1002>0 và 1/22+1/32+....+1/1002<1/1.2+1/2.3+....+1/99.100=1/1-1/2+1/2-1/3+...+1/99-1/100=1-1/100<1
nên 0<1/22+1/32+...+1/1002 <1
vậy 1/22+1/32+...+1/1002 ko phải là số tự nhiên
Ta có \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+............+\frac{1}{100^2}>0\) (1)
VÌ \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)
\(\frac{1}{4^2}< \frac{1}{3\cdot4}\)
\(.\) \(.\)
\(.\) \(.\)
\(.\) \(.\)
\(\frac{1}{100^2}< \frac{1}{99\cdot100}\)
Cộng vế với vế ta có \(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+........+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+..........+\frac{1}{99\cdot100}\)
\(\Rightarrow M< 1-\frac{1}{100}< 1\)(2)
Kết hợp (1) với (2) ta có : \(0< M< 1\)
\(\Rightarrow\)Không tồn tại \(M\)là số tự nhiên thỏa mãn điều kiện trên
k cho mình nha !
= \(\frac{2}{7}.\left(5\frac{1}{4}-3\frac{1}{4}\right)\)
= \(\frac{2}{7}.2\)
= \(\frac{4}{7}\)
\(\frac{2}{7}.5\frac{1}{4}-\frac{2}{7}.3\frac{1}{4}\)
=> \(\frac{2}{7}.\left(5\frac{1}{4}-3\frac{1}{4}\right)\)
=> \(\frac{2}{7}.2\)
=> \(\frac{4}{7}\)
#Hk_tốt
#Ngọc's_Ken'z
=49.(8+37+55)/{(2+98).[(98-2):2+1]}
=49.100/100.50
=49/50
\(\frac{49\times8+49\times37+49\times55}{2+4+6+8+....+96+98}.\)
= \(\frac{49\times\left(8+37+55\right)}{\left(98+2\right)\times\left[\left(98-2\right):2+1\right]:2}\)
= \(\frac{49\times100}{100\times49:2}\)
= \(\frac{49}{49:2}=\frac{49}{24,5}\)
= 2