Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1.
x = 14
=> 13 = x - 1 ; 15 = x + 1 ; 16 = x + 2 ; 29 = 2x + 1
Thế vào N(x) ta được :
x5 - ( x + 1 )x4 + ( x + 2 )x3 - ( 2x + 1 )x2 + ( x - 1 )x
= x5 - x5 - x4 + x4 + 2x3 - 2x3 - x2 + x2 - x
= -x = -14
Bài 2.
a) ( 1 - x - 2x3 + 3x2 )( 1 - x + 2x3 - 3x2 )
= [ ( 1 - x ) - ( 2x3 - 3x2 ) ][ ( 1 - x ) + ( 2x3 - 3x2 ) ]
= ( 1 - x )2 - ( 2x3 - 3x2 )2
= 1 - 2x + x2 - [ ( 2x3 )2 - 2.2x3.3x2 + ( 3x2 )2 ]
= x2 - 2x + 1 - ( 4x6 - 12x5 + 9x4 )
= x2 - 2x + 1 - 4x6 + 12x5 - 9x4
= -4x6 + 12x5 - 9x4 + x2 - 2x + 1
b) ( x - y + z )2 + ( z - y )2 + 2( x - y + z )( y - z )
= ( x - y + z )2 + ( z - y )2 - 2( x - y + z )( z - y )
= [ ( x - y + z ) - ( z - y ) ]2
= ( x - y + z - z + y )2
= x2
\(4x^2-9=\left(2x-3\right)\left(2x+3\right)\)
bài 2 áp dụng hằng đẳng thức bạn nhé
bài 3\(A=\left(x^3+3x^2+3x+1\right)+5\)
\(=\left(x+1\right)^3+5\) thay x=19 vào ta được
\(A=20^3+5=8005\)
\(B=\left(x^3-3x^2+3x-1\right)+1\)
\(=\left(x-1\right)^3+1\)
thay x=11 vào ta được
\(B=\left(11-1\right)^3+1=10^3+1=1001\)
a. gọi phần đầu đấy là A nhá, để đỡ cần viết lại
A=...............
= (3x+5)2 + ( 3x-5)2 - 9x2 -4
= (9x2 +30x + 25 ) + ( 9x2 -30x+ 25 ) - 9x2 -4
= 9x2 +30x + 25 + 9x2 -30x+25-9x2 -4
= 9x2 + 46
sai thì thôi nhé. bạn nên kiểm tra lại
d. (2x-1)*(4x2 + 2x +1 ) - 8x*( x2 +1) - 5
= 8x3 -1 - 8x3 -8x-5
= -8x-6
= -2(4x+3)
sai nhé. bạn nên kiểm tra lại
B1:
a) \(x^3-2x^2+x-2\)
= \(x^2\left(x-2\right)+\left(x-2\right)=\left(x-2\right)\left(x^2+1\right)\)
b) \(2x^3+3x^2-3x-2\)
= \(2x^3-2x^2+5x^2-5x+2x-2\)
= \(2x^2\left(x-1\right)+5x\left(x-1\right)+2\left(x-1\right)\)
= \(\left(x-1\right)\left(2x^2+5x+2\right)\)
= \(\left(x-1\right)\left(2x^2+4x+x+2\right)\)
= \(\left(x-1\right)\left[2x\left(x+2\right)+\left(x+2\right)\right]\)
= \(\left(x-1\right)\left(x+2\right)\left(2x+1\right)\)
c) \(5x^2+5y^2-x^2z+2xyz-y^2z-10xy\)
= \(5\left(x^2+2xy+y^2\right)+z\left(x^2+2xy+y^2\right)\)
= \(5\left(x+y\right)^2+z\left(x+y\right)^2\)
= \(\left(x+y\right)^2\left(5+z\right)\)
d) \(x^3-3x^2y+3xy^2-x+y-y^3\)
= \(\left(x-y\right)^3-\left(x-y\right)\)
= \(\left(x-y\right)\left[\left(x-y\right)^2-1\right]\)
= \(\left(x-y\right)\left(x-y-1\right)\left(x-y+1\right)\)
B2:
a) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)
\(\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\)
\(\left(2x-5\right)\left(2x+5-2x-7\right)=0\)
\(\left(2x-5\right).\left(-2\right)=0\)
\(\Rightarrow2x-5=0\Rightarrow x=\dfrac{5}{2}\)
b) \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)
\(\left(x+3\right)\left(x^2-2x\right)=0\)
\(\left(x+3\right).x.\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=0\\x=2\end{matrix}\right.\)
c) \(2x^3+3x^2+2x+3=0\)
\(x^2\left(2x+3\right)+\left(2x+3\right)=0\)
\(\left(2x+3\right)\left(x^2+1\right)=0\)
Ta thấy \(x^2+1>0\) với mọi x
\(\Rightarrow2x+3=0\Rightarrow x=\dfrac{-3}{2}\)
a) \(\left(2x+3y\right)^2=4x^2+12xy+9y^2\)
b) \(\left(x^2+\dfrac{2}{5}y\right)\left(x^2-\dfrac{2}{5}y\right)=\left(x^2\right)^2-\left(\dfrac{2}{5}y\right)^2\)
\(=x^4-\dfrac{4}{25}y^2\)
c) \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)=\left(x-3y\right)\left[x^2+3y.x+\left(3y\right)^2\right]\)
\(=x^3-\left(3y\right)^3=x^3-27y^3\)
d) \(\left(x+2y+z\right)\left(x+2y-z\right)=\left(x+2y\right)^2-z^2=x^2+4xy+4y^2-z^2\)
e) \(\left(x^2-3\right)\left(x^4+3x^2+9\right)=\left(x^2-3\right)\left[\left(x^2\right)^2+3.x^2+3^2\right]\)
\(=\left(x^2\right)^3-3^3=x^6-27\)
1 ) Thực hiện phép tính :
a ) \(-\frac{1}{3}xz\left(-9xy+15yz\right)+3x^2\left(2yz^2-yz\right)\)
\(=3x^2yz-5xyz^2+6x^2yz^2-3x^2yz\)
\(=-5xyz^2+6x^2yz^2\)
b ) \(\left(x-2\right)\left(x^2-5x+1\right)-x\left(x^2+11\right)\)
\(=x^3-5x^2-x-2x^2+10x-2-x^3-11x\)
\(=-7x^2-2x-2-x^3\)
c ) \(\left(x^3+5x^2-2x+1\right)\left(x-7\right)\)
\(=x^4+5x^3-2x^2+x-7x^3-35x^2+14x-7\)
\(=x^4-2x^3-37x^2+15x-7\)
d ) \(\left(2x^2-3xy+y^2\right)\left(x+y\right)\)
\(=2x^3-3x^2y+xy^2+2x^2y-3xy^2+y^3\)
\(=2x^3-x^2y-2xy^2+y^3\)
e ) \(\left[\left(x^2-2xy+2y^2\right)\left(x+2y\right)-\left(x^2-4y^2\right)\left(x-y\right)\right]2xy\)
( để xem lại )
2 Tìm x
a ) \(6x\left(5x+3\right)+3x\left(1-10x\right)=7\)
\(\Leftrightarrow30x^2+18x+3x-30x^2=7\)
\(\Leftrightarrow21x=7\)
\(\Leftrightarrow x=3\)
b ) Sai đề
c ) \(\left(x+1\right)\left(x+2\right)\left(x+5\right)-x^2\left(x+8\right)=27\)
( Để xem lại )
mình chép đúng theo đề cô cho mà sao lại sai được ,hay cô cho sai đề
a) 3x( 2x + 3) -(2x+5)(3x-2)=8
<=> 6x^2+9x-6x^2+4x-15x+10=8
<=> -2x+10=8
<=> -2x= 8-10 = -2
<=> x=1
b) (3x-4)(2x+1)-(6x+5)(x-3)=3
<=> 6x^2+3x-8x-4-6x^2+18x-5x+15=3
<=> -8x+11=3
<=> -8x= -8
<=> x=1
c, 2(3x-1)(2x+5)-6(2x-1)(x+2)=-6
<=> 2(6x^2+15x-2x-5)-6(2x^2+4x-x-2)=6
<=> 2(6x^2+13x-5)-6(2x^2+3x-2)=6
<=> 12x^2+ 26x-10-12x^2-18x+12=6
<=> 8x+2=6
<=> 8x=4
<=> x= 1/2
d, 3xy(x+y)-(x+y)(x^2 +y^2+2xy)+y^3=27
<=> 3x2y+3xy2-(x+y)(x+y)2+y3=27
<=> 3x2y+3xy2-(x+y)3+y3=27
<=> 3x2y +3xy2 -x3-3x2y-3xy2-y3+y3=27
<=> -x3=27
<=> x= \(-\sqrt[3]{27}\)= -3
Thực hiện phép tính
a, 6x3y5z : 3xy3z=2x2y2
b, \(\frac{3x+6}{x+2}+\frac{2x+4}{x+2}\)
\(=\frac{3\left(x+2\right)}{x+2}+\frac{2\left(x+2\right)}{x+2}\)
=3+2=5