![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{2}\sqrt{72}+\frac{3}{4}\sqrt{48}+\sqrt{162}-\)\(\sqrt{75}\)
\(=\frac{1}{2}.6\sqrt{2}+\frac{3}{4}.4\sqrt{3}+9\sqrt{2}-5\sqrt{3}\)
\(=3\sqrt{2}+3\sqrt{3}+9\sqrt{2}-5\sqrt{3}\)
\(=12\sqrt{2}-2\sqrt{3}\)
Trước \(\sqrt{75}\)là dấu " - " hay dấu " -- " vậy? Nếu là dấu " -- " thì \(--\sqrt{75}\Rightarrow+\sqrt{75}\)nha
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có\(a\sqrt{a}\cdot\sqrt{a}=a\sqrt{a\cdot a}=a\sqrt{a^2}=a\cdot a=a^2\)
P/S:Để tránh hiện tượng không ai trả lời nên mình mới trả lời nhé !
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{\sqrt{2}+1}-\sqrt{2}=\frac{1-\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)
\(=\frac{1-2-\sqrt{2}}{\sqrt{2}+1}\)
\(=\frac{-1-\sqrt{2}}{\sqrt{2}+1}=\frac{-1\left(1+\sqrt{2}\right)}{\sqrt{2}+1}=-1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
(2 + 3) x 5 - 4 + 1 = 22
4 x 5 + 3 - 2 + 1 = 22
3 x 5 + 4 + + 2 + 1 = 22
2 x 5 + 3 x 4 : 1 = 22
bt có v
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(A=\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
\(\sqrt{2}A=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(\sqrt{2}A=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}=\sqrt{7}-1-\sqrt{7}-1=-2\)
\(\Rightarrow A=\frac{-2}{\sqrt{2}}=-\sqrt{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\sqrt{4-\sqrt{9+4\sqrt{2}}}=\sqrt{4-\sqrt{1+2.2.\sqrt{2}+\left(2\sqrt{2}\right)^2}}\)
\(=\sqrt{4-\sqrt{\left(1+2\sqrt{2}\right)^2}}\)
\(=\sqrt{4-\left|1+2\sqrt{2}\right|}=\sqrt{4-1-2\sqrt{2}}=\sqrt{3-2\sqrt{2}}\)
\(=\sqrt{1-2.\sqrt{2}.1+\left(\sqrt{2}\right)^2}=\sqrt{\left(1-\sqrt{2}\right)^2}=\left|1-\sqrt{2}\right|=\sqrt{2}-1\)
Vậy ....
![](https://rs.olm.vn/images/avt/0.png?1311)
\(=\sqrt{5}-\sqrt{3-\sqrt{20-2.2\sqrt{5}.3}+9}=\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}=\)
\(\sqrt{5}-\sqrt{6-2\sqrt{5}}=\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}-\sqrt{5}+1=1.\)
\(\sqrt{4-2\sqrt{3}}-\frac{2}{\sqrt{3}+1}+\frac{\sqrt{3}-3}{\sqrt{3}-1}\)
\(=\sqrt{3}-1-\frac{2\left(\sqrt{3}-1\right)}{2}+\frac{\sqrt{3}\left(1-\sqrt{3}\right)}{\sqrt{3}-1}\)
\(=\sqrt{3}-1-\sqrt{3}+1-\sqrt{3}=-\sqrt{3}\)