Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1-x\right)\left(1+x\right)\left(1+x^2\right)\left(1+x^4\right)...\left(1+x^{20}\right)\)
\(=\left(1-x^2\right)\left(1+x^2\right)...\left(1+x^{20}\right)\)
\(=\left(1-x^{20}\right)\left(1+x^{20}\right)=1-x^{40}\)
\(\frac{x^2}{x^2+2x+1}\)\(-\)\(\frac{1}{x^2+2x+1}\)\(+\)\(\frac{2}{x +1}\)
= \(\frac{x^2-1+2\left(x+1\right)}{\left(x+1\right)^2}\)= \(\frac{x^2+2x+1}{x^2+2x+1}\)= 1
Trả lời:
a, ( x + 1 )2 + ( x - 2 ) ( x + 3 ) - 4x
= x2 + 2x + 1 + x2 + 3x - 2x - 6 - 4x
= 2x2 - x - 5
b, ( x - 2 )2 + ( x + 1 )2 + 2 ( x - 2 ) ( - 1 - x )
= x2 - 4x - 4 + x2 + 2x + 1 + ( 2x - 4 ) ( - 1 - x )
= 2x2 - 2x - 3 - 2x - 2x2 + 4x + 4x
= 4x - 3
a) \(\left(x+1\right)^2+\left(x-2\right)\left(x+3\right)-4x\)
\(=\left(x^2+2x+1\right)+\left(x^2+x-6\right)-4x\)
\(=x^2+2x+1+x^2+x-6-4x\)
\(=2x^2-x-5\)
b) \(\left(x-2\right)^2+\left(x+1\right)^2+2\left(x-2\right)\left(-1-x\right)\)
\(=\left(x^2-4x+4\right)+\left(x^2+2x+1\right)+\left(2x-4\right)\left(-1-x\right)\)
\(=x^2-4x+4+x^2+2x+1+\left(-2x-2x^2+4+4x\right)\)
\(=x^2-4x+4+x^2+2x+1-2x-2x^2+4+4x\)
\(=9\)
a) (x - 1) (x2 + x + 1) - (x + 1) (x2 - x + 1) + 2(x - 1) (x + 1) - 2(x + 2)2
= x3 - 1 - x3 - 1 + 2(x2 - 1) - 2(x2 + 4x + 4)
= -2 + 2x2 - 2 - 2x2 - 8x - 8
= -12
a)
\(\dfrac{x}{x-2}+\dfrac{2}{2-x}\\ =\dfrac{x}{x-2}-\dfrac{2}{x-2}\\ =\dfrac{x-2}{x-2}\\ =1\)
b)
\(\dfrac{x^2}{x^2}-1\\ =1-1\\ =0??\)