Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
1: \(A=\left(x+2\right)\left(x^2-2x+4\right)+2\left(x+1\right)\left(1-x\right)\)
\(=\left(x+2\right)\left(x^2-x\cdot2+2^2\right)-2\left(x+1\right)\left(x-1\right)\)
\(=x^3+2^3-2\left(x^2-1\right)\)
\(=x^3+8-2x^2+2=x^3-2x^2+10\)
\(B=\left(2x-y\right)^2-2\left(4x^2-y^2\right)+\left(2x+y\right)^2+4\left(y+2\right)\)
\(=\left(2x-y\right)^2-2\cdot\left(2x-y\right)\left(2x+y\right)+\left(2x+y\right)^2+4\left(y+2\right)\)
\(=\left(2x-y-2x-y\right)^2+4\left(y+2\right)\)
\(=\left(-2y\right)^2+4\left(y+2\right)\)
\(=4y^2+4y+8\)
2: Khi x=2 thì \(A=2^3-2\cdot2^2+10=8-8+10=10\)
3: \(B=4y^2+4y+8\)
\(=4y^2+4y+1+7\)
\(=\left(2y+1\right)^2+7>=7>0\forall y\)
=>B luôn dương với mọi y
Bài 1:
5: \(x^2\left(x-y+1\right)+\left(x^2-1\right)\left(x+y\right)\)
\(=x^3-x^2y+x^2+x^3+x^2y-x-y\)
\(=2x^3-x+x^2-y\)
6: \(\left(3x-5\right)\left(2x+11\right)-6\left(x+7\right)^2\)
\(=6x^2+33x-10x-55-6\left(x^2+14x+49\right)\)
\(=6x^2+23x-55-6x^2-84x-294\)
=-61x-349
D = (2x+3)2 - 2(2x-1)(2x+3) + (2x-1)2 + 31
D = [(2x+3) - (2x-1)]2 + 31
D = (2x + 3 - 2x + 1)2 + 31
D = 42 + 31
D = 16 + 31
D = 47
Bài 3:
\(\Leftrightarrow x^3+64-x^3+25x=264\)
hay x=8
\(1,C=6x^2+23x-55-6x^2-23x-21=-76\\ 2,=\left(2x^4-x^2+2x^3-x-6x^2+6-3\right):\left(2x^2-1\right)\\ =\left[\left(2x^2-1\right)\left(x^2+x-6\right)-3\right]:\left(2x^2-1\right)\\ =x^2+x-6\left(dư.-3\right)\\ 3,\Leftrightarrow x^3+64-x^3+25x=264\\ \Leftrightarrow25x=200\Leftrightarrow x=8\)
Bài 1:
\(3a.\left(2a^2-ab\right)=6a^3-3a^2b\)
\(\left(4-7b^2\right).\left(2a+5b\right)=8a+20b-14ab^2-35b^3\)
Bài 2:
\(2x^2-6x+xy-3y=2x.\left(x-3\right)+y.\left(x-3\right)=\left(x-3\right).\left(2x+y\right)\)
Bài 3: Tại x = 3/2, y =1/3 thì Q = 67/9
Bài 4:
\(\left(\frac{1}{x+1}+\frac{2x}{1-x^2}\right).\left(\frac{1}{x-1}\right)\) \(\frac{1}{\left(x+1\right).\left(x-1\right)}+\frac{2x}{\left(1-x^2\right).\left(x-1\right)}=\frac{x-1}{\left(x+1\right).\left(x-1\right)^2}+\frac{-2x}{\left(x-1\right)^2.\left(x+1\right)}\)
= \(\frac{x-1-2x}{\left(x+1\right).\left(x-1\right)^2}=\frac{-\left(x+1\right)}{\left(x+1\right).\left(x-1\right)^2}=\frac{-1}{\left(x-1\right)^2}\)
( 2x - 1 )( 3x + 2 )( 3 - x )
= ( 6x2 - 3x + 4x - 2 )( 3 - x )
= ( 6x2 + x - 2 )( 3 - x )
= 18x2 + 3x - 6 - 6x3 - x2 + 2x
= - ( 6x3 + 18x2 - 5x + 6 )
hình như cái cuôi bạn sai thì phải nó biến đổi thé này chú
=18x^2+3x-6-6x^3-x^2+2x
=-6x^3+(18x^2-x^2)+(2x+3x)-6
=-6x^3+17x^2+5x-6
a) ( 3x + 2y - 1 )( x - 5 ) - ( x - 2 )2y
= 3x(x - 5) + 2y(x - 5) - 1(x - 5) - ( 2xy - 4y )
= 3x2 - 15x + 2xy - 10y - x + 5 - 2xy + 4y
= 3x2 - 16x - 6y + 5
b) ( 3x - 2 )( 3x + 2 ) - ( 2x + 1 )( 4x + 3 )
= [ ( 3x )2 - 22 ] - ( 8x2 + 10x + 3 )
= 9x2 - 4 - 8x2 - 10x - 3
= x2 - 10 - 7
3x(x+1)(x-1)-(2x-3)2 =3x(x2-1)-4x2+12x-9=3x3-3x-4x2+12x-9=3x3-4x2+9x-9
3(x+1)+(x+1)2=(x+1)(1+x+1)=(x+1)(x+2)=x2+2x+x+2=x2+3x+2
the end