\(\sqrt{12}-\sqrt{27}+\sqrt{3}\)):
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2019

@Nguyễn Thị Thu Sương :

\(\frac{\sqrt{3+\sqrt{15}}}{\sqrt{2}}=\sqrt{\frac{3+\sqrt{15}}{2}}\)

\(=\sqrt{\frac{\sqrt{3}\left(\sqrt{3}+\sqrt{5}\right)}{5-3}}\)

\(=\sqrt{\frac{\sqrt{3}\left(\sqrt{3}+\sqrt{5}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}}\)

\(=\sqrt{\frac{\sqrt{3}}{\sqrt{5}-\sqrt{3}}}\)

24 tháng 6 2019

a) \(\left(\sqrt{12}-\sqrt{27}+\sqrt{3}\right):\sqrt{3}\)

\(=\left(2\sqrt{3}-3\sqrt{3}+\sqrt{3}\right):\sqrt{3}\)

\(=\sqrt{3}\left(2-3+1\right):\sqrt{3}\)

\(=0:\sqrt{3}=0\)

b) \(\left(5\sqrt{3}+3\sqrt{5}\right):\sqrt{15}\)

\(=\frac{5\sqrt{3}}{\sqrt{15}}+\frac{3\sqrt{5}}{\sqrt{15}}\)

\(=\frac{5\sqrt{3}}{\sqrt{3}\cdot\sqrt{5}}+\frac{3\sqrt{5}}{\sqrt{3}\cdot\sqrt{5}}\)

\(=\sqrt{5}+\sqrt{3}\)

17 tháng 9 2017

Ta có : \(a^3=10+3\sqrt[3]{\left(5+\sqrt{52}\right)\left(5-\sqrt{52}\right)}\left(\sqrt[3]{5+\sqrt{52}}+\sqrt[3]{5-\sqrt{52}}\right)\)

\(=10+3\sqrt[3]{-27}.a=10-9a\)

\(\Rightarrow a^3+9a-10=0\Rightarrow\left(a-1\right)\left(a^2+a+10\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a-1=0\\a^2+a+10=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=1\\\left(a+\dfrac{1}{2}\right)^2+\dfrac{39}{4}>0\end{matrix}\right.\)

\(\Rightarrow a=1\) \(\Rightarrow f\left(a\right)=1+1+1^2+.....+1^{2015}=2016\)

17 tháng 9 2017

cách thức tính a ? :) máy tính?

25 tháng 7 2018

f, \(\sqrt{\sqrt{5}+\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{\sqrt{5}+\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}=\sqrt{\sqrt{5}+\sqrt{3-2\sqrt{5}+3}}=\sqrt{\sqrt{5}+\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}+\sqrt{\left(\sqrt{5}-1\right)^2}}=\sqrt{\sqrt{5}+\sqrt{5}-1}=\sqrt{2\sqrt{5}-1}\)

25 tháng 7 2018

mik sửa lại câu f , tí nhé :

f , \(\sqrt{\sqrt{5}+\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

Bài 1:

a) Sửa đề: \(\left(\sqrt{12}+3\sqrt{5}-4\sqrt{135}\right)\cdot\sqrt{3}\)

Ta có: \(\left(\sqrt{12}+3\sqrt{5}-4\sqrt{135}\right)\cdot\sqrt{3}\)

\(=\sqrt{12}\cdot\sqrt{3}+3\sqrt{5}\cdot\sqrt{3}-4\sqrt{135}\cdot\sqrt{3}\)

\(=6+3\sqrt{15}-36\sqrt{5}\)

b) Ta có: \(\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}\)

\(=3\sqrt{28}-5\sqrt{28}+3\sqrt{112}-2\sqrt{112}\)

\(=-2\sqrt{28}+\sqrt{112}=-\sqrt{112}+\sqrt{112}=0\)

c) Ta có: \(2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{48}}\)

\(=2\cdot4\cdot\sqrt{5}\cdot\sqrt{\sqrt{3}}-2\cdot\sqrt{5}\cdot\sqrt{\sqrt{3}}-3\cdot2\cdot\sqrt{5}\cdot\sqrt{\sqrt{3}}\)

\(=8\sqrt{5}\cdot\sqrt{\sqrt{3}}-2\sqrt{5}\sqrt{\sqrt{3}}-6\sqrt{5}\sqrt{\sqrt{3}}\)

=0

Bài 2:

a) Ta có: \(A=\frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\)

\(=\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}\)

\(=\frac{1}{\sqrt{2}}\)

b) Ta có: \(B=\frac{9\sqrt{5}+3\sqrt{27}}{\sqrt{5}+\sqrt{3}}\)

\(=\frac{\sqrt{405}+\sqrt{243}}{\sqrt{5}+\sqrt{3}}\)

\(=\frac{9\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{5}+\sqrt{3}}=9\)

c) Ta có: \(C=\frac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)

\(=\frac{\sqrt{72}-\sqrt{48}+\sqrt{20}}{\sqrt{162}-\sqrt{108}+\sqrt{45}}\)

\(=\frac{2\left(\sqrt{18}-\sqrt{12}+\sqrt{5}\right)}{3\left(\sqrt{18}-\sqrt{12}+\sqrt{5}\right)}=\frac{2}{3}\)

31 tháng 5 2018

\(A=\left(3\sqrt{2}+\sqrt{6}\right)\sqrt{\frac{9-2.3\sqrt{3}+3}{2}}=\frac{\sqrt{2}\left(3+\sqrt{3}\right)}{\sqrt{2}}.\sqrt{\left(3-\sqrt{3}\right)^2}=\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)=9-3=6\)

20 tháng 7 2016

\(\left(5\sqrt{3}+3\sqrt{5}\right):\sqrt{15}=\sqrt{15}\left(\sqrt{5}+\sqrt{3}\right):\sqrt{15}=\sqrt{5}+\sqrt{3}\)

28 tháng 3 2020

Bài 1 :

a, ĐKXĐ : \(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-1\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

b, ĐKXĐ : \(-x^2+10x-25\ge0\)

=> \(x^2-10x+25\le0\)

=> \(\left(x-5\right)^2\le0\)

=> \(x-5\le0\)

=> \(x\le5\)

Bài 2 :

a, Ta có : \(A=\sqrt{\left(2\sqrt{2}-5\right)^2}+\sqrt{\left(2-\sqrt{5}\right)^2}\)

=> \(A=5-2\sqrt{2}+\sqrt{5}-2=3-2\sqrt{2}+\sqrt{5}\)

b, Ta có : \(B=\sqrt{9+4\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)

=> \(B=\sqrt{4+2.2\sqrt{5}+5}-\sqrt{1-2\sqrt{5}+5}\)

=> \(B=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{\left(1-\sqrt{5}\right)^2}\)

=> \(B=2+\sqrt{5}-\sqrt{5}+1=3\)

c, Ta có : \(C=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)

=> \(C=\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{2}}+\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{2}}\)

=> \(C=\frac{\sqrt{1+2\sqrt{3}+3}}{\sqrt{2}}+\frac{\sqrt{1-2\sqrt{3}+3}}{\sqrt{2}}\)

=> \(C=\frac{\sqrt{\left(1+\sqrt{3}\right)^2}}{\sqrt{2}}+\frac{\sqrt{\left(1-\sqrt{3}\right)^2}}{\sqrt{2}}\)

=> \(C=\frac{1+\sqrt{3}}{\sqrt{2}}+\frac{\sqrt{3}-1}{\sqrt{2}}=\frac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)

28 tháng 3 2020
https://i.imgur.com/ufN2JtV.jpg
AH
Akai Haruma
Giáo viên
30 tháng 6 2019

a)

\((\sqrt{3}-2\sqrt{12}+2\sqrt{4})(\sqrt{27}+\sqrt{144}-2\sqrt{16})\)

\(=(\sqrt{3}-4\sqrt{3}+4)(3\sqrt{3}+12-8)\)

\(=(-3\sqrt{3}+4)(3\sqrt{3}+4)=4^2-(3\sqrt{3})^2=16-27=-11\)

b)

\((2\sqrt{5}+2\sqrt{3})^2-4\sqrt{60}\)

\(=(2\sqrt{5})^2+2.2\sqrt{5}.2\sqrt{3}+(2\sqrt{3})^2-8\sqrt{15}\)

\(=32+8\sqrt{15}-8\sqrt{15}=32\)

c)

\(\sqrt{6}(3\sqrt{12}-4\sqrt{3}+\sqrt{48}-5\sqrt{6})\)

\(=3\sqrt{72}-4\sqrt{18}+\sqrt{6.48}-5.\sqrt{36}\)

\(=18\sqrt{2}-12\sqrt{2}+12\sqrt{2}-30=18\sqrt{2}-30\)

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

d)

\((\sqrt{2}-\sqrt{3})(\sqrt{6}+\sqrt{2})(\sqrt{2}+\sqrt{3})\)

\(=(\sqrt{2}-\sqrt{3})(\sqrt{2}+\sqrt{3})(\sqrt{6}+\sqrt{2})\)

\(=(2-3)(\sqrt{6}+\sqrt{2})=-(\sqrt{6}+\sqrt{2})\)

e) Biểu thức bên trong căn lớn âm nên biểu căn bậc 2 không có nghĩa

f)

\((\frac{2}{\sqrt{3}-1}+\frac{3}{\sqrt{3}-2}+\frac{15}{3-\sqrt{3}}).\frac{1}{\sqrt{3}+5}\)

\(=(\frac{2\sqrt{3}+15}{3-\sqrt{3}}+\frac{3}{\sqrt{3}-2}).\frac{1}{\sqrt{3}+5}\)

\(=\frac{2\sqrt{3}+15)(\sqrt{3}-2)+3(3-\sqrt{3})}{(3-\sqrt{3})(\sqrt{3}-2)}.\frac{1}{\sqrt{3}+5}\)

\(=\frac{-15+8\sqrt{3}}{(-9+5\sqrt{3})(\sqrt{3}+5)}=\frac{-15+8\sqrt{3}}{-30+16\sqrt{3}}=\frac{-15+8\sqrt{3}}{2(-15+8\sqrt{3})}=\frac{1}{2}\)