Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(đk:\left\{{}\begin{matrix}3x-2\ne0\\3x+2\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne\dfrac{2}{3}\\x\ne-\dfrac{2}{3}\end{matrix}\right.\)
\(\dfrac{1}{3x-2}-\dfrac{1}{3x+2}-\dfrac{3x-6}{4-9x^2}\\ =\dfrac{1}{3x-2}-\dfrac{1}{3x+2}+\dfrac{3x-6}{9x^2-4}\\ =\dfrac{3x+2-\left(3x-2\right)+3x-6}{9x^2-4}\\ =\dfrac{3x+2-3x+2+3x-6}{9x^2-4}\\ =\dfrac{3x-2}{\left(3x-2\right)\left(3x+2\right)}\\ =\dfrac{1}{3x+2}\)
\(\frac{1}{3x-2}-\frac{4}{3x+2}-\frac{3x-6}{4-9x^2}\left(đk:x\ne\pm\frac{2}{3};\right)\)\(=\frac{3x+2}{\left(3x-2\right)\left(3x+2\right)}-\frac{4\left(3x-2\right)}{\left(3x-2\right)\left(3x+2\right)}+\frac{3x-6}{\left(3x-2\right)\left(3x+2\right)}\)
=\(\frac{10-9x}{\left(3x-2\right)\left(3x+2\right)}+\frac{3x-6}{\left(3x-2\right)\left(3x+2\right)}=\frac{4-6x}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\frac{-2\left(3x-2\right)}{\left(3x-2\right)\left(3x+2\right)}=\frac{-2}{3x+2}\)
a) \(\dfrac{1}{3x-2}-\dfrac{1}{3x+2}-\dfrac{3x-6}{9x^2-4}\)
\(=\dfrac{3x+2-3x+2-3x+6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{-3x+10}{\left(3x-2\right)\left(3x+2\right)}\)
b) \(\dfrac{x+25}{2x^2-50}-\dfrac{x+5}{x^2-5x}-\dfrac{5-x}{2x^2+10x}\)
\(=\dfrac{x+25}{2\left(x-5\right)\left(x+5\right)}-\dfrac{x+5}{x\left(x-5\right)}+\dfrac{x-5}{2x\left(x+5\right)}\)
\(=\dfrac{x^2+25x-2\left(x+5\right)^2+\left(x-5\right)^2}{2x\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{x^2+25x-2x^2-20x-50+x^2-10x+25}{2x\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{-5x-25}{2x\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{-5\left(x+5\right)}{2x\left(x-5\right)\left(x+5\right)}=\dfrac{-5}{2x\left(x-5\right)}\)
c) Ta có: \(\dfrac{1-2x}{2x}-\dfrac{4x}{2x-1}-\dfrac{3}{2x-4x^2}\)
\(=\dfrac{-\left(2x-1\right)^2-8x^2+3}{2x\left(2x-1\right)}\)
\(=\dfrac{-\left(4x^2-4x+1\right)-8x^2+3}{2x\left(2x-1\right)}\)
\(=\dfrac{-4x^2+4x-1-8x^2+3}{2x\left(2x-1\right)}\)
\(=\dfrac{-12x^2+4x+2}{2x\left(2x-1\right)}\)
\(\frac{3x^2+3x+3}{4x+4}\): \(\frac{9x^3-9}{2x^2-2}\)= \(\frac{3\left(x^2+x+1\right)}{4\left(x+1\right)}\): \(\frac{9\left(x^3-1\right)}{2\left(x^2-1\right)}\)
= \(\frac{3\left(x^2+x+1\right)}{4\left(x+1\right)}\). \(\frac{2\left(x-1\right)\left(x+1\right)}{9\left(x-1\right)\left(x^2+x+1\right)}\)= \(\frac{1}{6}\)
mk chỉ phân tích thôi bạn tự chia nha!
a, \(16x^4-81=(4x^2)^2-9^2=(4x^2-9)(4x^2+9)\)
\(=[(2x)^2-3^2](4x^2+9)\)
\(=(2x+3)(2x-3)(4x^2+9)\)
b, \(x^3-3x^2+3x-1=(x-1)^3\)
\(x^2-2x+1=(x-1)^2\)
c, \(18x^5+9x^4+3x^3+6x^2+3x+1=(18x^5+9x^4+3x^3)+(6x^2+3x+1)\)
\(=(6x^2+3x+1)(3x^3+1)\)
câu c bạn đánh sai 1 dấu phép toán kìa!!!!
Lời giải:
ĐKXĐ: $x\neq \pm \frac{2}{3}$
Gọi biểu thức trên là $A$
\(A=\frac{3x+2}{(3x-2)(3x+2)}-\frac{3x-2}{(3x+2)(3x-2)}+\frac{3x-6}{9x^2-4}\\ =\frac{3x+2}{(3x-2)(3x+2)}-\frac{3x-2}{(3x+2)(3x-2)}+\frac{3x-6}{(3x-2)(3x+2)}\\ =\frac{3x+2-(3x-2)+(3x-6)}{(3x-2)(3x+2)}=\frac{3x-2}{(3x-2)(3x+2)}=\frac{1}{3x+2}\)
Bạn lưu ý lần sau gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.