Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{12}{7}\cdot\frac{3}{4}-\frac{6}{7}\cdot\frac{4}{3}+\frac{6}{7}\)
\(=\frac{6}{7}\left(\frac{3}{2}-\frac{4}{3}+1\right)\)
\(=\frac{6}{7}\left(\frac{1}{6}+1\right)=\frac{6}{7}\cdot\frac{7}{6}=1\)
2.
\(=2017\cdot2018\cdot\left[\left(2016\cdot2018\right)-\left(2016\cdot2017\right)\right]\)
\(=2017\cdot2018\cdot2016\left(2018-2017\right)=2016\cdot2017\cdot2018\)
3.
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)....\left(\frac{1}{100}-1\right)=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot....\cdot\frac{99}{100}\)
\(=\frac{1}{100}\)
4.
\(=\frac{1+2+2^2+2^4+...+2^9}{2\left(1+2+2^2+2^3+2^4+...+2^9\right)}\)
\(=\frac{1}{2}\)
mình chỉ làm được câu 3 thôi
có \(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)....\left(\frac{1}{100}-1\right)\)
\(=\frac{-1}{2}\times\frac{-2}{3}\times....\times\frac{-99}{100}\)
\(=\frac{\left(-1\right)\left(-2\right)....\left(-99\right)}{2\times3\times....\times100}\)
\(=\frac{-\left(1\times2\times....\times99\right)}{2\times3\times....\times100}\)
\(=\frac{-1}{100}\)
a) \(2^3+3.\left(\frac{1}{2}\right)^0+\left[\left(-2\right)^2:\frac{1}{2}\right]\)
\(=8+3.1+4:\frac{1}{2}\)
\(=8+3+8=19\)
b)\(\frac{2^{15}.9^4}{6^6.8^3}=\frac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^6.\left(2^3\right)^3}=\frac{2^{15}.3^8}{2^6.3^6.2^9}\)\(=\frac{2^{15}.3^8}{2^{15}.3^6}=3^2=9\)
c) \(\left(1+\frac{2}{3}-\frac{1}{4}\right).\left(\frac{4}{5}-\frac{3}{4}\right)^2\)
\(=\frac{17}{12}.\frac{1}{400}=\frac{17}{4800}\)
d) \(\left(-\frac{10}{3}\right)^3.\left(\frac{-6}{5}\right)^4=-\frac{100}{27}.\frac{1296}{625}\)\(=\frac{-4.48}{1.25}=-\frac{192}{25}\)
Bài 1:
\(a,22\frac{1}{2}.\frac{7}{9}+50\%-1,25\)
=\(\frac{45}{2}.\frac{7}{9}+\frac{1}{2}-\frac{5}{4}\)
=\(\frac{35}{2}+\frac{1}{2}-\frac{5}{4}\)
=\(\frac{70}{4}+\frac{2}{4}-\frac{5}{4}\)
=\(\frac{67}{4}\)
\(b,1,4.\frac{15}{49}-\left(\frac{4}{5}+\frac{2}{3}\right):2\frac{1}{5}\)
=\(\frac{7}{5}.\frac{15}{49}-\left(\frac{12}{15}+\frac{10}{15}\right):\frac{11}{5}\)
=\(\frac{3}{7}-\frac{22}{15}.\frac{5}{11}\)
=\(\frac{3}{7}-\frac{2}{3}\)
=\(-\frac{5}{21}\)
\(c,125\%.\left(-\frac{1}{2}\right)^2:\left(1\frac{5}{6}-1,6\right)+2016^0\)
=\(\frac{5}{4}.\frac{1}{4}:\left(\frac{11}{6}-\frac{8}{5}\right)+1\)
=\(\frac{5}{16}:\frac{7}{30}+1\)
=\(\frac{131}{56}\)
\(d,1,4.\frac{15}{49}-\left(20\%+\frac{2}{3}\right):2\frac{1}{5}\)
=\(\frac{7}{5}.\frac{15}{49}-\left(\frac{1}{5}+\frac{2}{3}\right):\frac{11}{5}\)
=\(\frac{3}{7}-\frac{13}{15}:\frac{11}{5}\)
=\(\frac{3}{7}-\frac{13}{33}\)
=\(\frac{8}{231}\)
Bài đ làm giống hệt như bài c
Bài 2 :
\(a,\left|\frac{3}{4}.x-\frac{1}{2}\right|=\frac{1}{4}\)
=>\(\left[{}\begin{matrix}\frac{3}{4}.x-\frac{1}{2}=\frac{1}{4}\\\frac{3}{4}.x-\frac{1}{2}=-\frac{1}{4}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}\frac{3}{4}.x=\frac{1}{4}+\frac{1}{2}=\frac{3}{4}\\\frac{3}{4}.x=-\frac{1}{4}+\frac{1}{2}=\frac{1}{4}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\frac{3}{4}:\frac{3}{4}=1\\x=\frac{1}{4}:\frac{3}{4}=\frac{1}{3}\end{matrix}\right.\)
Vậy x ∈{1;\(\frac{1}{3}\)}
\(b,\frac{5}{3}.x-\frac{2}{5}.x=\frac{19}{10}\)
=>\(\frac{19}{15}.x=\frac{19}{10}\)
=>\(x=\frac{19}{10}:\frac{19}{15}=\frac{3}{2}\)
Vậy x ∈ {\(\frac{3}{2}\)}
c,\(\left|2.x-\frac{1}{3}\right|=\frac{2}{9}\)
=>\(\left[{}\begin{matrix}2.x-\frac{1}{3}=\frac{2}{9}\\2.x-\frac{1}{3}=-\frac{2}{9}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}2.x=\frac{2}{9}+\frac{1}{3}=\frac{5}{9}\\2.x=-\frac{2}{9}+\frac{1}{3}=\frac{1}{9}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\frac{5}{9}:2=\frac{5}{18}\\x=\frac{1}{9}:2=\frac{1}{18}\end{matrix}\right.\)
Vậy x∈{\(\frac{5}{18};\frac{1}{18}\)}
\(d,x-30\%.x=-1\frac{1}{5}\)
=\(70\%x=-\frac{6}{5}\)
=\(\frac{7}{10}.x=-\frac{6}{5}\)
=>\(x=-\frac{6}{5}:\frac{7}{10}=-\frac{12}{7}\)
Vậy x∈{\(-\frac{12}{7}\)}
Bài 2
a/
\(\Rightarrow\left[{}\begin{matrix}\frac{3}{4}.x-\frac{1}{2}=\frac{1}{4}\\\frac{3}{4}.x-\frac{1}{2}=-\frac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{3}{4}.x=\frac{1}{4}+\frac{1}{2}\\\frac{3}{4}.x=-\frac{1}{4}+\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{3}{4}.x=\frac{3}{4}\\\frac{3}{4}.x=\frac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{3}{4}:\frac{3}{4}\\x=\frac{1}{4}:\frac{3}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy \(x=1\) hoặc \(x=\frac{1}{3}\)
b/ Đặt x làm thừa số chung rồi tính như bình thường
c/ Tương tự câu a
d/ Tương tự câu b
C\(\frac{1}{1}-\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+\frac{1}{5.6}\)-\(\frac{1}{6.7}\)+\(\frac{1}{7.8}\)-\(\frac{1}{8.9}+\frac{1}{9.10}\)
c=\(\frac{1}{1}-\frac{1}{10}\)
c=\(\frac{9}{10}\)
còn a và b rễ lắm mình ko thích làm bài rễ đâu bạn cố chờ lời giải khác nhé!
\(\left(\frac{3}{8}+-\frac{3}{4}+\frac{7}{12}\right):\frac{5}{6}+\frac{1}{2}\)
\(=\left(\frac{9}{24}+-\frac{18}{24}+\frac{14}{24}\right):\frac{5}{6}+\frac{1}{2}\)
\(=\frac{5}{24}:\frac{5}{6}+\frac{1}{2}\)
\(=\frac{5}{24}.\frac{6}{5}+\frac{1}{2}\)
\(=\frac{1}{4}+\frac{1}{2}\)
\(=\frac{1}{4}+\frac{2}{4}\)
\(=\frac{3}{4}\)
\(\frac{1}{2}+\frac{3}{4}-\left(\frac{3}{4}-\frac{4}{5}\right)\)
\(=\frac{1}{2}+\frac{3}{4}-\left(\frac{15}{20}-\frac{16}{20}\right)\)
\(=\frac{1}{2}+\frac{3}{4}-\frac{-1}{20}\)
\(=\frac{10}{20}+\frac{15}{20}-\frac{-1}{20}\)
\(=\frac{25}{20}-\frac{-1}{20}\)
\(=\frac{26}{20}\)
\(=\frac{13}{10}\)
d, \(\frac{1023}{2^1+2^2+...+2^{10}}\)
\(\text{Đặt}:S=2^1+2^2+...+2^{10}\)
\(2S=2.\left(2^1+2^2+..+2^{10}\right)\)
\(2S=2^2+2^3+..+2^{11}\)
\(S=2S-S=\left(2^2+2^3+...+2^{11}\right)-\left(2^1+2^2+...+2^{10}\right)\)
\(S=2^{11}-2^1=2^{11}-1\)
Thay S vào biểu thức \(\frac{1023}{2^1+2^2+...+2^{10}}\),ta được
\(\frac{1023}{2^{11}-1}=\frac{1023}{2047}\)
Vậy ......