\(-\frac{2}{1.3}-\frac{2}{3.5}-\frac{2}{5.7}-\frac{2}{7.9}-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(-\frac{2}{1.3}-\frac{2}{3.5}-\frac{2}{5.7}-\frac{2}{7.9}-\frac{2}{9.11}-\frac{2}{11.13}-\frac{2}{13.15}\)

\(=\left(-\frac{2}{1.3}\right)+\left(-\frac{2}{3.5}\right)+\left(-\frac{2}{5.7}\right)+\left(-\frac{2}{7.9}\right)+\left(-\frac{2}{9.11}\right)+\left(-\frac{2}{11.13}\right)+\left(-\frac{2}{13.15}\right)\)

\(=\left(-2\right).\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}+\frac{1}{13.15}\right)\)

\(=\left(-2\right).\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\right)\)

\(=\left(-2\right).\left(1-\frac{1}{15}\right)=\left(-2\right).\frac{14}{15}\)

\(=-\frac{28}{15}\)

6 tháng 3 2016

tks bạn nha ^_^ Miu Ti

1 tháng 2 2017

\(\frac{-2}{1.3}-\frac{2}{3.5}-...-\frac{2}{13.15}\)

\(=-\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{13.15}\right)\)

\(=-\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{13}-\frac{1}{15}\right)\)

\(=-\left(1-\frac{1}{15}\right)\)

\(=\frac{-14}{15}\)

8 tháng 5 2017

Đặt \(A=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{99\cdot101}\)

\(2A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...+\frac{1}{99}-\frac{1}{101}\)

\(2A=\frac{100}{101}\)

\(A=\frac{50}{101}\)

b) \(\frac{2^{10}+3^{31}+2^{40}+3^6}{2^{11}\cdot3^{31}+2^{41}\cdot3^6}=\frac{2^{10}+2^{40}}{2^{11}+2^{41}}\)

\(\frac{2^{10}+2^{40}}{2^{11}+2^{41}}=\frac{1}{2}\)

8 tháng 5 2017

=1/2x(1/1.3+1/3.5+...+1/99.101)

=1/2.(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101)

=1/2.(1-1/101)

=1/2.100/101

=50/101

chúc bạn học tốt

26 tháng 8 2018

a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}.\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

b) \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{35.37}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{35}-\frac{1}{37}\)

\(=\frac{1}{3}-\frac{1}{37}=\frac{34}{111}\)

26 tháng 8 2018

c) \(\frac{7}{7.9}+\frac{7}{9.11}+\frac{7}{11.13}+...+\frac{7}{99.101}\)

\(=\frac{7}{2}.\left(\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{7}{2}.\left(\frac{1}{7}-\frac{1}{101}\right)=\frac{7}{2}\cdot\frac{94}{707}=\frac{47}{101}\)

4 tháng 4 2017

dễ thế mà mày ko bít làm à

4 tháng 4 2017

B=2(2/3.5 - 2/ 5.7 +....................+ 2/99.101) 

B=2(1/3.5 -2/5.7+..............+1/99.100)

B=2(1/3-1/5+1/5-.............+1/99-1/100)

B=2(1/3-1/100)

B=2.97/100

B=97/50

31 tháng 3 2019

a)Ta có:

\(A=4\frac{25}{16}+25\left(\frac{9}{16}:\frac{125}{64}\right):\frac{-27}{8}\)

\(\Rightarrow A=\frac{89}{16}+25.\frac{36}{125}:\frac{-27}{8}\)

\(\Rightarrow A=\frac{89}{16}+\frac{36}{5}:\frac{-27}{8}\)

\(\Rightarrow A=\frac{89}{16}+\frac{-32}{15}\)

\(\Rightarrow A=\frac{823}{240}\)

Vậy A=.....

b)Ta có:

\(C=\frac{2^3}{3.5}+\frac{2^3}{5.7}+\frac{2^3}{7.9}+...+\frac{2^3}{101.103}\)

\(\Rightarrow C=\frac{2^2.2}{3.5}+\frac{2^2.2}{5.7}+\frac{2^2.2}{7.9}+...+\frac{2^2.2}{101.103}\)

\(\Rightarrow C=2^2\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{101.103}\right)\)

\(\Rightarrow C=4\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{101}-\frac{1}{103}\right)\)

\(\Rightarrow C=4\left(\frac{1}{3}-\frac{1}{103}\right)\)

\(\Rightarrow C=4.\frac{100}{309}\)

\(\Rightarrow C=\frac{400}{309}\)

Vậy C=.....

31 tháng 3 2019

B, C=2^3/3.5 + 2^3/5.7+......+2^3/101.103

C= 2^3(1/3-1/5+1/5-1/7+....+1/101-1/103)

C=8(1/3-1/103)

C=8.100/309

C=800/309

VẬY C= 800/309

3 tháng 4 2020

Ta có:\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{19.21}=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{19.21}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\right)=\frac{1}{2}\left(1-\frac{1}{21}\right)=\frac{1}{2}.\frac{20}{21}=\frac{10}{21}\)

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}\)\(+...+\frac{1}{19.21}\)

=\(\frac{2}{2}\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{19.21}\right)\)

=\(\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{19.21}\right)\)

=\(\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{19}-\frac{1}{21}\right)\)

=\(\frac{1}{2}\left(\frac{1}{1}-\frac{1}{21}\right)\)

=\(\frac{1}{2}.\frac{20}{21}\)

=\(\frac{20}{42}=\frac{10}{21}\)

16 tháng 10 2019

1-1/3-1/65

16 tháng 10 2019

\(A=1-\frac{2}{3.5}-\frac{2}{5.7}-\frac{2}{7.9}-...-\frac{2}{63.65}\)

\(A=1-\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{63-65}\right)\)

\(A=1-\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{63}-\frac{1}{65}\right)\)

\(A=1-\left(\frac{1}{3}-\frac{1}{65}\right)\)

\(A=1-\frac{62}{195}\)

\(A=\frac{133}{195}\)