\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\left(\sqrt{4-\sq...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2021

\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)\)

\(\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{8-2\sqrt{15}}\right)\)

\(\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{\sqrt{5}^2-2\sqrt{3}\sqrt{5}+\sqrt{3}^2}\right)\)

\(\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\right)\)

\(\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)^2\)

\(\left(4+\sqrt{15}\right)\left(5+3-2\sqrt{15}\right)\)

\(\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(32-8\sqrt{15}+2\sqrt{30}-30\)

\(2-8\sqrt{15}+2\sqrt{30}\)

13 tháng 7 2021

\(=\left(\sqrt{4+\sqrt{15}}\right)^2\cdot\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{4-\sqrt{15}}\right)\)

\(=\sqrt{\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)}\cdot\sqrt{2\left(4+\sqrt{15}\right)}\cdot\left(\sqrt{5}-\sqrt{3}\right)\)

\(=1\cdot\sqrt{8+2\sqrt{15}}\cdot\left(\sqrt{5}-\sqrt{3}\right)=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\cdot\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\left|\sqrt{5}+\sqrt{3}\right|\cdot\left(\sqrt{5}-\sqrt{3}\right)=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=2\)

ưu tiên phương pháp bình phương :

a) \(\left(4+\sqrt{15}\right)^2\left(\sqrt{10}-\sqrt{6}\right)^2\left(\sqrt{4-\sqrt{15}}\right)^2\)

\(=\left(4+\sqrt{15}\right)^2\left(4-\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)^2\)

Tính ra kết quả nhớ căn đó

b) Phương pháp trục căn thức :

\(\frac{\sqrt{3+\sqrt{5}}\sqrt{3-\sqrt{5}}}{\sqrt{3-\sqrt{5}}}-\frac{\sqrt{3-\sqrt{5}}\sqrt{3+\sqrt{5}}}{\sqrt{3+\sqrt{5}}}-\sqrt{2}\)

Trên tử có hàng đẳng thức . bạn tự quy động là ra 

3 tháng 7 2017

mình vẫn chưa hiểu câu a

NV
12 tháng 11 2019

\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8-2\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)^2\)

\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(=2\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)=2\)

\(A=\left|x-1990\right|+\left|1991-x\right|\ge\left|x-1990+1991-x\right|=1\)

\(A_{min}=1\) khi \(1990\le x\le1991\)

22 tháng 1 2020

\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4-\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8-2\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)^2\)

\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(=2\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)\)

\(=2\)

Tính

a) Ta có: \(A=\left(\sqrt{6}+\sqrt{10}\right)-\sqrt{4-\sqrt{15}}\)

\(=\sqrt{2}\left(\sqrt{3}+\sqrt{5}\right)-\sqrt{4-\sqrt{15}}\)

\(=\sqrt{3}+\sqrt{5}-\sqrt{8-2\sqrt{15}}\)

\(=\sqrt{3}+\sqrt{5}-\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\)

\(=\sqrt{3}+\sqrt{5}-\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(=\sqrt{3}+\sqrt{5}-\left|\sqrt{5}-\sqrt{3}\right|\)

\(=\sqrt{3}+\sqrt{5}-\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\sqrt{3}+\sqrt{5}-\sqrt{5}+\sqrt{3}\)

\(=2\sqrt{3}\)

c) Ta có: \(C=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{2}\cdot\sqrt{4-\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\)

\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\left|\sqrt{5}-\sqrt{3}\right|\)

\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)^2\)

\(=\left(4+\sqrt{15}\right)\cdot\left(8-2\sqrt{15}\right)\)

\(=2\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)\)

\(=2\left[4^2-\left(\sqrt{15}\right)^2\right]\)

\(=2\cdot\left[16-15\right]=2\cdot1=2\)