Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(-\frac{5}{12}\right):\frac{7}{3}-\left(-\frac{5}{12}\right):\frac{7}{4}=\left(-\frac{5}{12}\right):\left(\frac{7}{3}-\frac{7}{4}\right)=\left(-\frac{5}{12}\right):\frac{7}{12}=-\frac{5}{7}\)
\(\left[\left(\frac{2}{5}\right)^0\right].\frac{19}{13}-\left(\frac{7}{3}\right)^{2019}.\frac{3}{7}^{2019}\)
\(=\left(\frac{2}{5}\right)^0.\frac{19}{13}-\left(\frac{7}{3}.\frac{3}{7}\right)^{2019}\)
\(=1.\frac{19}{13}-1^{2019}\)
\(=1.\frac{19}{13}-1\)
\(=\frac{19}{13}-1\)
\(=\frac{6}{13}\)
Bài giải
a, \(\left(-\frac{5}{12}\right)\text{ : }\frac{7}{3}-\left(-\frac{5}{12}\right)\text{ : }\frac{7}{4}\)
\(=\left(-\frac{5}{12}\right)\text{ : }\frac{7}{3}-\left(-\frac{5}{12}\right)\text{ : }\frac{7}{4}\)
\(=\left(-\frac{5}{12}\right)\cdot\frac{3}{7}-\left(-\frac{5}{12}\right)\cdot\frac{4}{7}\)
\(=\frac{-15}{84}+\frac{20}{84}=\frac{5}{84}\)
b, \(\left[\left(\frac{2}{5}\right)^0\right]^{2020}\cdot\frac{19}{37}-\left(\frac{7}{3}\right)^{2019}\cdot\frac{3^{2019}}{7}\)
\(=1^{2020}\cdot\frac{19}{37}-\frac{7^{2019}}{3^{2019}}\cdot\frac{3^{2019}}{7}\)
\(=\frac{19}{37}-7^{2018}\)
\(\hept{\begin{cases}A=-\frac{1}{2020}-\frac{3}{2019^2}-\frac{5}{2019^3}-\frac{7}{2019^4}^{ }\\B=-\frac{1}{2020}-\frac{7}{2019^2}-\frac{5}{2019^3}-\frac{3}{2019^4}\end{cases}}\)
=>\(A-B=-\frac{1}{2020}-\frac{3}{2019^2}-\frac{5}{2019^3}-\frac{7}{2019^4}+\frac{1}{2020}+\frac{7}{2019^2}+\frac{5}{2019^3}+\frac{3}{2019^4}\)
\(=>A-B=\left(-\frac{3}{2019^2}+\frac{7}{2019^2}\right)+\left(-\frac{7}{2019^4}+\frac{3}{2019^4}\right)\)
=>\(A-B=\frac{4}{2019^2}+-\frac{4}{2019^4}\)
=>\(A-B=\frac{2019^2.4}{2019^4}-\frac{4}{2019^4}\)
=>\(A>B\)
cách này mình tự nghĩ
a,\(\frac{-2}{5}+\frac{7}{21}=\frac{-2}{5}+\frac{1}{3}=\frac{-6}{15}+\frac{5}{15}=\frac{-1}{15}\)
b,\(\left(\frac{1}{3}\right)^5.3^5-2020^0=\left(\frac{1}{3}.3\right)^5-1=1^5-1=1-1=0\)
c,\(\left(-\frac{1}{4}\right).6\frac{2}{11}+3\frac{9}{11}.\left(-\frac{1}{4}\right)\)
\(=\left(-\frac{1}{4}\right).\left(6\frac{2}{11}+3\frac{9}{11}\right)=\left(-\frac{1}{4}\right).\left[\left(6+3\right)+\left(\frac{2}{11}+\frac{9}{11}\right)\right]\)
\(=\left(-\frac{1}{4}\right).\left[9+1\right]=\frac{-1}{4}.10=\frac{\left(-1\right).10}{4}=\frac{\left(-1\right).5}{2}=\frac{-5}{2}\)
\(\frac{x+4}{2019}+\frac{x+3}{2020}=\frac{x+2}{2021}+\frac{x+1}{2020}\)
\(\Leftrightarrow(\frac{x+4}{2019}+1)+(\frac{x+3}{2020}+1)=(\frac{x+2}{2021}+1)+(\frac{x+1}{2022}+1)\)
\(\Leftrightarrow\frac{x+2023}{2019}+\frac{x+2023}{2020}=\frac{x+2023}{2021}+\frac{x+2023}{2022}\)
\(\Leftrightarrow\frac{x+2023}{2019}+\frac{x+2023}{2020}-\frac{x+2023}{2021}-\frac{x+2023}{2022}=0\)
\(\Leftrightarrow\left(x+2023\right)\left(\frac{1}{2019}+\frac{1}{2020}-\frac{1}{2021}-\frac{1}{2020}\right)=0\)
\(\Leftrightarrow x+2023=0\)
\(\Leftrightarrow x=-2023\)
Lời giải:
\(A-B=\frac{4}{2019^2}-\frac{4}{2019^4}\)
Dễ thấy $0< 2019^2< 2019^4\Rightarrow \frac{4}{2019^2}> \frac{4}{2019^4}$
$\Rightarrow A-B=\frac{4}{2019^2}-\frac{4}{2019^4}>0$
$\Rightarrow A>B$
thầy ơi vì sao \(A-B=\frac{4}{2019^2}-\frac{4}{2019^4}\)
Ta có:
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\rightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{z+x}{zx}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\Rightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)
Thay tất cả giá trị x,y,z vào M ta được:
\(M=\frac{2020x^3+2020y^3+2020z^3}{x^3+y^3+z^3}+\frac{2021x^5+2021y^5}{x^5+y^5}\)
\(\Rightarrow M=\frac{2020\left(x^3+y^3+z^3\right)}{x^3+y^3+z^3}+\frac{2021\left(x^5+y^5\right)}{x^5+y^5}\)
\(\Rightarrow M=2020+2021=4041\)