Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ (\(x^3y^2\)-\(\frac{1}{2}x^3y\) + \(2xy\) - \(2x^2y^3\) + \(xy^2\) - \(4y^2\) =
\(a,\left(5x-2y\right)\left(x^2-xy+1\right)=5x^3-5x^2y+5x-2x^2y-2xy^2-2y=5x^3-7x^2y-2xy^2+5x-2y\)\(b\left(x-1\right)\left(x+1\right)\left(x-2\right)=\left(x^2-1\right)\left(x+2\right)=x^3+2x^2-x-2\)\(c,\dfrac{1}{2}x^2y^2\left(2x+y\right)\left(2x-y\right)=\dfrac{1}{2}x^2y^2\left(4x^2-y^2\right)=2x^4y^2-\dfrac{1}{2}x^2y^4\)
\(C1:=3+1-3y\)
\(=4-3y\)
\(C2:\)
\(a.=3x\left(2y-1\right)\)
\(b.=\left(x-y\right)\left(x+y\right)+4\left(x+y\right)\)
\(=\left(x-y+4\right)\left(x+y\right)\)
\(C3:\)
\(a.6x^2+2x+12x-6x^2=7\)
\(14x=7\)
\(x=\frac{1}{2}\)
\(b.\frac{1}{5}x-2x^2+2x^2+5x=-\frac{13}{2}\)
\(\frac{26}{5}x=-\frac{13}{2}\)
\(x=-\frac{13}{2}\times\frac{5}{26}\)
\(x=-\frac{5}{4}\)
Bạn Moon làm kiểu gì vậy ?
1) \(\left(3x^2y^2+x^2y^2\right):\left(x^2y^2\right)-3y\)
\(=\left[\left(x^2y^2\right)\left(3+1\right)\right]:\left(x^2y^2\right)-3y\)
\(=4-3y\)
2) a, \(6xy-3x=\left(3x\right)\left(2y-1\right)\)
b, \(x^2-y^2+4x+4y=\left(x+y\right)\left(x-y\right)+4\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y+4\right)\)
3) a, \(2x\left(3x+1\right)+\left(4-2x\right)3x=7\)
\(< =>6x^2+2x+12x-6x^2=7\)
\(< =>14x=7< =>x=\frac{7}{14}\)
b, \(\frac{1}{2}x\left(\frac{2}{5}-4x\right)+\left(2x+5\right)x=-6\frac{1}{2}\)
\(< =>\frac{x}{2}.\frac{2}{5}-\frac{x}{2}.4x+2x^2+5x=-\frac{13}{2}\)
\(< =>\frac{x}{5}-2x^2+2x^2+5x=-\frac{13}{2}\)
\(< =>\frac{26x}{5}=\frac{-13}{2}\)
\(< =>26x.2=\left(-13\right).5\)
\(< =>52x=-65< =>x=-\frac{65}{52}=-\frac{5}{4}\)
\(ĐKXĐ:x\ne y,x\ne0,y\ne0\)
Ta có : \(\frac{3xy^2+x^2y}{xy\left(x-y\right)}-\frac{3x^2y+xy^2}{xy.\left(x-y\right)}\)
\(=\frac{3xy^2+x^2y-3x^2y-xy^2}{xy.\left(x-y\right)}\)
\(=\frac{-3xy.\left(x-y\right)+xy.\left(x-y\right)}{xy.\left(x-y\right)}=\frac{-2xy.\left(x-y\right)}{xy.\left(x-y\right)}=-2\)
\(\frac{3xy^2+x^2y}{xy\left(x-y\right)}-\frac{3x^2y+xy^2}{xy.\left(x-y\right)}\)
\(=\frac{3xy^2+x^2y}{xy\left(x-y\right)}+\frac{-\left(3x^2y+xy^2\right)}{xy.\left(x-y\right)}\)
\(=\frac{3xy^2+x^2y-3x^2y-xy^2}{xy.\left(x-y\right)}\)
\(=\frac{\left(3xy^2-3x^2y\right)+\left(x^2y-xy^2\right)}{xy.\left(x-y\right)}\)
\(=\frac{3xy.\left(y-x\right)+xy.\left(x-y\right)}{xy.\left(x-y\right)}\)
\(=\frac{-3xy.\left(x-y\right)+xy.\left(x-y\right)}{xy.\left(x-y\right)}\)
\(=\frac{\left(x-y\right).\left(-3xy+xy\right)}{xy.\left(x-y\right)}\)
\(=\frac{-3xy+xy}{xy}\)
\(=\frac{-2xy}{xy}\)
\(=-2.\)
A/\(\left(2x^3+y^2-7xy\right)4xy^2.\)
\(=8x^4y^2+4xy^4-28x^2y^3\)
B/\(\left(2x^3-x-1\right)\left(5x-2\right)\)
\(=10x^4-5x^2-5x-4x^3+2x+2\)
\(=10x^4-5x^3-3x-4x^3+2\)
C/\(\left(2x^2-3\right)\left(4x^4+6x^2+9\right)\)
\(=\left(2x^2-3\right)\left(2x+3\right)^2\)
D/\(\left(3x^2-2y\right)^3-\left(2x^2-y\right)^3\)
( Bài này áp dụng hằng đẳng thức là làm được ạ )
\(\frac{6x^3\left(2y+1\right)}{5y}\cdot\frac{15}{2x^3\left(2y+1\right)}=\frac{9}{y}\)
\(\frac{3}{x^2-1}:\frac{6x}{2x^3\left(2y+1\right)}=\frac{3}{x^2-1}\cdot\frac{2x^3\left(2y+1\right)}{6x}=\frac{x^2\left(2y+1\right)}{x^2-1}\)
hok tốt.
\(\frac{6x^3\left(2y+1\right)}{5y}\cdot\frac{15}{2x^3\left(2y+1\right)}\)
\(=\frac{6x^3\left(2y+1\right)}{5y}\cdot\left[\frac{15}{2x^3\left(2y+1\right)}\right]\)
\(=\frac{180x^3y+90x^3}{20x^3y^2+10x^3y}\)
\(=\frac{180y+90}{20y^2+10y}\)
\(=\frac{18y+9}{2y^2+y}\)
\(=\frac{9\left(2y+1\right)}{y\left(2y+1\right)}\)
\(=\frac{9}{y}\)
(x^3y^2+1/2x^2y^3)(2x-y)
2x^3y^3-x^3y^3+x^3y^3-1/2x^2y^4
2x^3y^3-1/2x^2y^4
bạn rồng 3 đầu đúng nhưng làm như thế không hay cho lắm
vì hai nhân từ cuối là hằng đẳng thức hiệu hai bình phương mà