Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chú ý 2 điều: \(\cos45^o=\sin45^o=\frac{\sqrt{2}}{2}\) và \(\cos^2a+\sin^2a=1\)
Do đó:
a) \(A=\cos^252^o.\frac{\sqrt{2}}{2}+\sin^252^o.\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}\left(\cos^252^o+\sin^252^o\right)=\frac{\sqrt{2}}{2}.1=\frac{\sqrt{2}}{2}\)
b) \(B=\frac{\sqrt{2}}{2}.\cos^247^o+\frac{\sqrt{2}}{2}.\sin^247^o=\frac{\sqrt{2}}{2}\left(\cos^247^o+\sin^247^o\right)=\frac{\sqrt{2}}{2}.1=\frac{\sqrt{2}}{2}\)
a: \(=\left(sin^210^0+sin^280^0\right)+\left(sin^220^0+sin^270^0\right)+sin^245^0\)
\(=1+1+\dfrac{1}{2}=\dfrac{5}{2}\)
b: \(=\left(sin^242^0+sin^248^0\right)+\left(sin^243^0+sin^247^0\right)+...+sin^245^0\)
=1+1+1+1/2
=3,5
c: \(=tan35^0\cdot tan55^0\cdot tan40^0\cdot tan50^0\cdot tan45^0=1\)
d: \(=\left(cos^215^0+cos^275^0\right)-\left(cos^225^0+cos^265^0\right)+\left(cos^235^0+cos^255^0\right)-\dfrac{1}{2}\)
=1-1+1-1/2
=1/2
Lời giải:
a)
\(A=\frac{\sin ^2a-\cos ^2a}{\sin a\cos a}=\frac{\sin a}{\cos a}-\frac{\cos a}{\sin a}=\frac{\sin a}{\cos a}-\frac{1}{\frac{\sin a}{\cos a}}=\tan a-\frac{1}{\tan a}\)
\(=\sqrt{3}-\frac{1}{\sqrt{3}}\)
b)
Sử dụng công thức: \(\sin ^2a+\cos ^2a=1; \cos a=\sin (90-a); \tan a=\cot (90-a)\) ta có:
\(B=\cos ^255^0-\cot 58^0+\frac{\tan 52^0}{\cot 38^0}+\cos ^235^0+\tan 32^0\)
\(=\sin ^2(90^0-55^0)-\tan (90^0-58^0)+\frac{\tan 52^0}{\tan (90^0-38^0)}+\cos ^235^0+\tan 32^0\)
\(=(\sin ^235^0+\cos ^235^0)-\tan 32^0+\tan 32^0+\frac{\tan 52^0}{\tan 52^0}\)
\(=1+0+1=2\)
Lời giải:
a)
\(A=\frac{\sin ^2a-\cos ^2a}{\sin a\cos a}=\frac{\sin a}{\cos a}-\frac{\cos a}{\sin a}=\frac{\sin a}{\cos a}-\frac{1}{\frac{\sin a}{\cos a}}=\tan a-\frac{1}{\tan a}\)
\(=\sqrt{3}-\frac{1}{\sqrt{3}}\)
b)
Sử dụng công thức: \(\sin ^2a+\cos ^2a=1; \cos a=\sin (90-a); \tan a=\cot (90-a)\) ta có:
\(B=\cos ^255^0-\cot 58^0+\frac{\tan 52^0}{\cot 38^0}+\cos ^235^0+\tan 32^0\)
\(=\sin ^2(90^0-55^0)-\tan (90^0-58^0)+\frac{\tan 52^0}{\tan (90^0-38^0)}+\cos ^235^0+\tan 32^0\)
\(=(\sin ^235^0+\cos ^235^0)-\tan 32^0+\tan 32^0+\frac{\tan 52^0}{\tan 52^0}\)
\(=1+0+1=2\)
Ta có \(\cot\alpha=\tan\beta\) ; \(\cos^2\alpha+\sin^2\alpha=1\)
Khi đó \(-\frac{\cot58^{\text{o}}+\tan27^{\text{o}}}{\cot63^{\text{o}}+\tan32^{\text{o}}}+1=\frac{-\cot58^{\text{o}}-\tan27^{\text{o}}+\cot63^{\text{o}}+\tan32^{\text{o}}}{\cot63^{\text{o}}+\tan32^{\text{o}}}\)
\(=\frac{\left(\tan32^{\text{o}}-\cot58^{\text{o}}\right)+\left(\cot63^{\text{o}}-\tan27^{\text{o}}\right)}{\cot63^{\text{o}}+\tan32^{\text{o}}}=0\)
=> \(\frac{\cot58^{\text{o}}+\tan27^{\text{o}}}{\cot63^{\text{o}}+\tan32^{\text{o}}}=1\)
=> \(\cos^255^{\text{o}}-\frac{\cot58^{\text{o}}+\tan27^{\text{o}}}{\cot63^{\text{o}}+\tan32^{\text{o}}}=\cos^255^{\text{o}}-1=-\sin^255\)
a: \(=\left(\cos^215^0+\cos^275^0\right)+\left(\cos^225^0+\cos^265^0\right)+\left(\cos^235^0+\cos^255^0\right)+\cos^245^0\)
=1+1+1+1/2
=3,5
b: \(=\left(\sin^210^0+\sin^280^0\right)-\left(\sin^220^0+\sin^270^0\right)+\left(\sin^230^0\right)-\left(\sin^240^0+\sin^250^0\right)\)
=1-1-1+1/4
=-1+1/4=-3/4
c: \(=\left(\sin15^0-\cos75^0\right)+\left(\sin75^0-\cos15^0\right)+\sin30^0\)
=1/2