Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ( 3x - 2 )( 4x + 5 ) - 6x( 2x - 1 )
= 12x2 + 7x - 10 - 12x2 + 6x
= 13x - 10
b) ( 2x - 5 )2 - 4( x + 3 )( x - 3 )
= 4x2 - 20x + 25 - 4( x2 - 9 )
= 4x2 - 20x + 25 - 4x2 + 36
= 61 - 20x
c) 2x3 - 5x2 + 7x - 6
= 2x3 - 3x2 - 2x2 + 3x + 4x - 6
= x2( 2x - 3 ) - x( 2x - 3 ) + 2( 2x - 3 )
= ( 2x - 3 )( x2 - x + 2 )
=> ( 2x3 - 5x2 + 7x - 6 ) : ( 2x - 3 ) = x2 - x + 2
a, (3x - 2 ) (4x + 5) - 6x (2x -1) = ( 7x + 15x -8x - 10 ) - ( 12x2 -6x ) = 7x2 + 15x - 8x -10 -12x2 + 6x = -5x2 + x - 10
=3x(x^2-2)(3x^2+x-2)
=(3x^3-6x)(3x^2+x-2)
=9x^5+3x^4-6x^3-18x^3-6x^2+12x
=9x^5+3x^4-12x^3-6x^2+12x
2x(x^2-1)=2x^3-2x
a: \(=\dfrac{4x-8+2x+4-8}{\left(x-2\right)\left(x+2\right)}=\dfrac{6x-12}{\left(x-2\right)\left(x+2\right)}=\dfrac{6}{x+2}\)
b: \(=\dfrac{-x+7x-4}{3x-2}=\dfrac{6x-4}{3x-2}=2\)
c: \(=\dfrac{x}{2x+1}-\dfrac{1}{\left(2x+1\right)\left(2x-1\right)}-\dfrac{\left(x-2\right)}{2x-1}\)
\(=\dfrac{2x^2-x-1-\left(x-2\right)\left(2x+1\right)}{\left(2x+1\right)\left(2x-1\right)}\)
\(=\dfrac{2x^2-x-1-2x^2-x+4x+2}{\left(2x+1\right)\left(2x-1\right)}\)
\(=\dfrac{2x+1}{\left(2x+1\right)\left(2x-1\right)}=\dfrac{1}{2x-1}\)
d: \(=\dfrac{5}{2x-3}+\dfrac{2}{2x+3}+\dfrac{2x-33}{4x^2-99}\)
\(=\dfrac{10x+15+4x-6+2x-33}{\left(2x-3\right)\left(2x+3\right)}=\dfrac{16x-24}{\left(2x-3\right)\left(2x+3\right)}=\dfrac{8}{2x+3}\)
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
a) 3x.(x² - 2)
= 3x.x² + 3x.(-2)
= 3x³ - 6x
b) (6x³ + 2x² - 4x) : 2x
= 6x³ : 2x + 2x² : 2x - 4x : 2x
= 3x² + x - 2
c) 2x(x² - 1)
= 2x.x² - 2x.1
= 2x³ - 2x