Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3.2^2+2^3:2+1234^0\)
\(\Rightarrow3.2^2+2^2+1\)
\(\Rightarrow2^2\left(3+1\right)\)\(+1\)
=>\(2^2.4+1\)\(\Rightarrow4.4+1=17\)
b) \(\left(2^3.5+2^2.25\right)\)\(\div20-5\)
=\(\left(40+100\right):20-5\)
=\(140:20-5=7-5=2\)
=
\(a,27.75+27.25\)
\(=27.\left(75+25\right)\)
\(=27.100\)
\(=2700\)
\(b,\left(-6\right)+20+\left(-4\right)\)
\(=\left(-6-4\right)+20\)
\(=-10+20\)
\(=10\)
\(c,2^2.3^1-\left(1^{2012}+2012^0\right):2\)
\(=4.3-\left(1+1\right):2\)
\(=12-2:2\)
\(=12-1\)
\(=11\)
a)27.75+27.25
=27.(75+25)
=27.100
=2700
b)(-6)+20+(-4)
=[(-6)+(-4)]+20
=(-10)+20
=10
c)22.3-(12012+20120):2
=12-2:2
=12-1
=11
Ta có:
B=1+1/2*(1+2)+1/3*(1+2+3)+..+1/20*(1+2+3+...+20)
B=1+3/2+6/3+10/4+...+210/20
=2/2+3/2+4/2+5/2+...+21/2=115
Mk thấy phần a dễ lên bạn tự làm nha
B=(37373737.43-43434343.37):(12+22+32+............+1002)
B=(37.1010101.43-43.101010101.37):(12+22+32+............+1002)
B=0:(12+22+32+............+1002)
B=0
Vậy B=0
Chúc bn học tốt
b ) \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
= 1 - 1/2 + 1/2 - 1/3 + ... + 1/99 - 1/100
= 1 - 1/100
= 99/100
c ) Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)
=> A < \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
=> A < 1 - 1/2 + 1/2 - 1/3 + ... + 1/99 - 1/100= 1 - 1/100 = 99/100 < 1
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)< 1
b, \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\)\(\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
c,Ta thấy
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
\(.....\)
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\left(đpcm\right)\)