Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^3\cdot5^3-20\cdot\left\{300-\left[546-2^3\cdot\left(7^8-7^6+7^0\right)\right]\right\}\)
\(=3^3\cdot5^3-20\cdot\left\{300-\left[546-2^3\cdot5647153\right]\right\}\)
\(=3^3\cdot5^3-20\cdot\left\{300-\left[546-45177224\right]\right\}\)
\(=3^3\cdot5^3-20\cdot\left\{300--45176678\right\}\)
\(=3^3\cdot5^3-20\cdot45176978\)
\(=3375-903539560\)
\(=-903536185\)
\(626500:\left\{50^2:\left[178-4\cdot\left(35-21:3\right)\right]\right\}\)
\(=626500:\left\{50^2:\left[178-4\cdot\left(35-7\right)\right]\right\}\)
\(=626500:\left\{50^2:\left[178-4\cdot28\right]\right\}\)
\(=626500:\left\{50^2:\left[178-112\right]\right\}\)
\(=626500:\left\{50^2:66\right\}\)
\(=626500:\frac{1250}{33}\)
\(=\frac{82698}{5}\)
CHUC BAN HOC TOT >.<
a,
2.(-25).(-4).50
=(2.50).[(-4).(-25)]
=100.100
=10 000
b,
(-5)2.(-3)3.23
=25 . (-27).8
=(25.8).(-27)
=200 .(-27)
=-5400
1024:(26:25+42:4)
=1024 : ( 26-5+42-1 )
=1024 : ( 2+4 )
=1024:6 = 512/3
!!!!
b ) \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
= 1 - 1/2 + 1/2 - 1/3 + ... + 1/99 - 1/100
= 1 - 1/100
= 99/100
c ) Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)
=> A < \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
=> A < 1 - 1/2 + 1/2 - 1/3 + ... + 1/99 - 1/100= 1 - 1/100 = 99/100 < 1
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)< 1
b, \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\)\(\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
c,Ta thấy
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
\(.....\)
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\left(đpcm\right)\)
A)
=36:4.3+2.25
=9.3+50
=27+50
=77
B)
=5.16-18:9
=80-2
=78
Ủng hộ nhé! Ngồi nãy giờ mà ko đc j cả huhu :(