
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) ĐKXĐ: \(x;y\ne0,x\ne\frac{y}{2},y\ne\frac{x}{2}\)
\(\frac{y}{2x^2-xy}+\frac{4x}{y^2-2xy}=\frac{y}{x\left(2x-y\right)}-\frac{4x}{y\left(2x-y\right)}\)\(=\frac{y^2-4x^2}{xy\left(2x-y\right)}=\frac{\left(y-2x\right)\left(y+2x\right)}{xy\left(2x-y\right)}\)
\(=\frac{-\left(y+2x\right)}{xy}\)
b) ĐKXĐ: \(x\ne2;x\ne-2\)
\(\frac{1}{x+2}+\frac{3}{x^2-4}+\frac{x-14}{\left(x^2+4x+4\right)\left(x-2\right)}\)\(=\frac{1}{x+2}+\frac{3}{\left(x-2\right)\left(x+2\right)}+\frac{x-14}{\left(x+2\right)^2\left(x-2\right)}\)
\(=\frac{\left(x-2\right)\left(x+2\right)+3\left(x+2\right)+x-14}{\left(x+2\right)^2\left(x-2\right)}\)\(=\frac{x^2-4+3x+6+x-14}{\left(x+2\right)^2\left(x-2\right)}\)\(=\frac{x^2+4x-12}{\left(x+2\right)^2\left(x-2\right)}=\frac{\left(x^2+4x+4\right)-16}{\left(x+2\right)^2\left(x-2\right)}\)\(=\frac{\left(x+2\right)^2-16}{\left(x+2\right)^2\left(x-2\right)}=\frac{\left(x+2-4\right)\left(x+2+4\right)}{\left(x+2\right)^2\left(x-2\right)}\)\(=\frac{\left(x-2\right)\left(x+6\right)}{\left(x+2\right)^2\left(x-2\right)}=\frac{x+6}{\left(x+2\right)^2}\)

\(P=\left(x-y\right)^2+\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)-4x^2=\left(x-y-x-y\right)^2-\left(2x\right)^2=\left(-2y\right)^2-\left(2x\right)^2\)
\(=\left(2y-2x\right)\left(2y+2x\right)=2\left(y-x\right)2\left(y+x\right)=4\left(x+y\right)\left(y-x\right)\)
\(x^3-x^2y+3x-3y=x^2\left(x-y\right)+3\left(x-y\right)=\left(x-y\right)\left(x^2+3\right)\)
\(x^3-2x^2-4xy^2+x=x\left(x^2-2x+1-4y^2\right)=x\left[\left(x-1\right)^2-\left(2y\right)^2\right]=x\left(x+2y-1\right)\left(x-2y-1\right)\)
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-8=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-8\)
Đặt \(x^2+7x+10=t\), ta có:
\(t\left(t+2\right)-8=t^2+2t-8=t^2-2t+4t-8=t\left(t-2\right)+4\left(t-2\right)=\left(t-2\right)\left(t+4\right)\)
\(=\left(x^2+7x+10+4\right)\left(x^2+7x+10-2\right)=\left(x^2+7x+14\right)\left(x^2+7x-8\right)\)

a) \(\left(\right. x + y \left.\right)^{3} - \left(\right. x + y \left.\right) \left(\right. x^{2} - x y + y^{2} \left.\right) = 3 x y \left(\right. x + y \left.\right)\)
Giải:
Bắt đầu với vế trái của phương trình:
\(\left(\right. x + y \left.\right)^{3} - \left(\right. x + y \left.\right) \left(\right. x^{2} - x y + y^{2} \left.\right)\)
Bước 1: Mở rộng \(\left(\right. x + y \left.\right)^{3}\):
\(\left(\right. x + y \left.\right)^{3} = x^{3} + 3 x^{2} y + 3 x y^{2} + y^{3}\)
Bước 2: Mở rộng \(\left(\right. x + y \left.\right) \left(\right. x^{2} - x y + y^{2} \left.\right)\):
\(\left(\right. x + y \left.\right) \left(\right. x^{2} - x y + y^{2} \left.\right) = x \left(\right. x^{2} - x y + y^{2} \left.\right) + y \left(\right. x^{2} - x y + y^{2} \left.\right)\)\(= x^{3} - x^{2} y + x y^{2} + y x^{2} - x y^{2} + y^{3}\)\(= x^{3} + y^{3} + \left(\right. y x^{2} - x^{2} y \left.\right) = x^{3} + y^{3}\)
Bước 3: Trừ các biểu thức:
\(\left(\right. x + y \left.\right)^{3} - \left(\right. x + y \left.\right) \left(\right. x^{2} - x y + y^{2} \left.\right) = \left(\right. x^{3} + 3 x^{2} y + 3 x y^{2} + y^{3} \left.\right) - \left(\right. x^{3} + y^{3} \left.\right)\)\(= 3 x^{2} y + 3 x y^{2}\)\(= 3 x y \left(\right. x + y \left.\right)\)
Vậy, phương trình đã đúng:
\(\left(\right. x + y \left.\right)^{3} - \left(\right. x + y \left.\right) \left(\right. x^{2} - x y + y^{2} \left.\right) = 3 x y \left(\right. x + y \left.\right)\)
b) \(B = \left(\right. 3 x + 2 \left.\right) \left(\right. 9 x^{2} - 6 x + 4 \left.\right) - 3 \left(\right. 9 x^{3} - 2 \left.\right)\)
Giải:
Bước 1: Mở rộng \(\left(\right. 3 x + 2 \left.\right) \left(\right. 9 x^{2} - 6 x + 4 \left.\right)\):
\(\left(\right. 3 x + 2 \left.\right) \left(\right. 9 x^{2} - 6 x + 4 \left.\right) = 3 x \left(\right. 9 x^{2} - 6 x + 4 \left.\right) + 2 \left(\right. 9 x^{2} - 6 x + 4 \left.\right)\)\(= 27 x^{3} - 18 x^{2} + 12 x + 18 x^{2} - 12 x + 8\)\(= 27 x^{3} + 8\)
Bước 2: Mở rộng \(3 \left(\right. 9 x^{3} - 2 \left.\right)\):
\(3 \left(\right. 9 x^{3} - 2 \left.\right) = 27 x^{3} - 6\)
Bước 3: Trừ hai biểu thức:
\(B = \left(\right. 27 x^{3} + 8 \left.\right) - \left(\right. 27 x^{3} - 6 \left.\right) = 8 + 6 = 14\)
Vậy, \(B = 14\).
c) \(C = \left(\right. x - 2 \left.\right) \left(\right. x^{2} - 2 x + 4 \left.\right) - \left(\right. x^{3} - 7 \left.\right)\)
Giải:
Bước 1: Mở rộng \(\left(\right. x - 2 \left.\right) \left(\right. x^{2} - 2 x + 4 \left.\right)\):
\(\left(\right. x - 2 \left.\right) \left(\right. x^{2} - 2 x + 4 \left.\right) = x \left(\right. x^{2} - 2 x + 4 \left.\right) - 2 \left(\right. x^{2} - 2 x + 4 \left.\right)\)\(= x^{3} - 2 x^{2} + 4 x - 2 x^{2} + 4 x - 8\)\(= x^{3} - 4 x^{2} + 8 x - 8\)
Bước 2: Trừ biểu thức \(x^{3} - 7\):
\(C = \left(\right. x^{3} - 4 x^{2} + 8 x - 8 \left.\right) - \left(\right. x^{3} - 7 \left.\right)\)\(C = x^{3} - 4 x^{2} + 8 x - 8 - x^{3} + 7\)\(C = - 4 x^{2} + 8 x - 1\)
Vậy, \(C = - 4 x^{2} + 8 x - 1\).
d) \(D = \left(\right. x + 1 \left.\right)^{3} - \left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right) - 3 x \left(\right. x + 1 \left.\right)\)
Giải:
Bước 1: Mở rộng \(\left(\right. x + 1 \left.\right)^{3}\):
\(\left(\right. x + 1 \left.\right)^{3} = x^{3} + 3 x^{2} + 3 x + 1\)
Bước 2: Mở rộng \(\left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right)\):
\(\left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right) = x \left(\right. x^{2} + x + 1 \left.\right) - 1 \left(\right. x^{2} + x + 1 \left.\right)\)\(= x^{3} + x^{2} + x - x^{2} - x - 1\)\(= x^{3} - 1\)
Bước 3: Mở rộng \(3 x \left(\right. x + 1 \left.\right)\):
\(3 x \left(\right. x + 1 \left.\right) = 3 x^{2} + 3 x\)
Bước 4: Trừ các biểu thức:
\(D = \left(\right. x^{3} + 3 x^{2} + 3 x + 1 \left.\right) - \left(\right. x^{3} - 1 \left.\right) - \left(\right. 3 x^{2} + 3 x \left.\right)\)\(D = x^{3} + 3 x^{2} + 3 x + 1 - x^{3} + 1 - 3 x^{2} - 3 x\)\(D = 2\)
Vậy, \(D = 2\).
e) \(E = 3 \left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right) + x \left(\right. x + 1 \left.\right) - x \left(\right. x^{2} + x + 1 \left.\right)\)
Giải:
Bước 1: Mở rộng \(3 \left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right)\):
\(3 \left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right) = 3 \left(\right. x \left(\right. x^{2} + x + 1 \left.\right) - \left(\right. x^{2} + x + 1 \left.\right) \left.\right)\)\(= 3 \left(\right. x^{3} + x^{2} + x - x^{2} - x - 1 \left.\right) = 3 \left(\right. x^{3} - 1 \left.\right)\)\(= 3 x^{3} - 3\)
Bước 2: Mở rộng \(x \left(\right. x + 1 \left.\right)\):
\(x \left(\right. x + 1 \left.\right) = x^{2} + x\)
Bước 3: Mở rộng \(x \left(\right. x^{2} + x + 1 \left.\right)\):
\(x \left(\right. x^{2} + x + 1 \left.\right) = x^{3} + x^{2} + x\)
Bước 4: Trừ các biểu thức:
\(E = \left(\right. 3 x^{3} - 3 \left.\right) + \left(\right. x^{2} + x \left.\right) - \left(\right. x^{3} + x^{2} + x \left.\right)\)\(E = 3 x^{3} - 3 + x^{2} + x - x^{3} - x^{2} - x\)\(E = 2 x^{3} - 3\)
Vậy, \(E = 2 x^{3} - 3\).
g) \(9 x \left(\right. x + 1 \left.\right)^{3} + \left(\right. x - 1 \left.\right)^{3} = 2 x^{3}\)
Giải:
Mở rộng biểu thức và kiểm tra tính đúng đắn:
\(9 x \left(\right. x + 1 \left.\right)^{3} = 9 x \left(\right. x^{3} + 3 x^{2} + 3 x + 1 \left.\right) = 9 x^{4} + 27 x^{3} + 27 x^{2} + 9 x\)\(\left(\right. x - 1 \left.\right)^{3} = x^{3} - 3 x^{2} + 3 x - 1\)
Cộng cả hai biểu thức:
\(9 x \left(\right. x + 1 \left.\right)^{3} + \left(\right. x - 1 \left.\right)^{3} = 9 x^{4} + 27 x^{3} + 27 x^{2} + 9 x + x^{3} - 3 x^{2} + 3 x - 1\)\(= 9 x^{4} + 28 x^{3} + 24 x^{2} + 12 x - 1\)
So với \(2 x^{3}\), ta thấy biểu thức không đúng. Có thể bài toán có lỗi. Nếu có sự nhầm lẫn, bạn có thể điều chỉnh lại nhé!
h) \(\left(\right. x + 3 \left.\right) \left(\right. x^{2} - 3 x + 9 \left.\right) = x \left(\right. x^{2} - 3 x + 9 \left.\right) = x \left(\right. x^{2} + 4 \left.\right) - 1\)

a) =(x-y)5+(x-y)3=(x-y)3[(x-y)2+1]
b) =33(y-2x)3:-9(y-2x)=-3(y-2x)2
c) =(x-y)2 [3(x-y)3-2(x-y)2+3]:5(x-y)2=[3(x-y)3-2(x-y)2+3]/5
Chọn đáp án D