Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1}{9}\right)^{2015}.9^{2015}-96^2:24^2\)
\(=1-\left(4\right)^2\)
\(=1-16=-15\)
\(Q=165+247+528+125+315\)
\(=\left(247+528+125\right)+\left(165+315\right)\)
\(=900+480\)
\(=1280\)
\(R=1000+200+30+4+5000+600+70+8+80\)
\(=\left(1000+5000\right)+\left(200+600\right)+\left(30+70+80\right)+\left(4+8+8\right)\)
\(=6000+800+180+20\)
\(=6000+\left(800+100\right)+\left(80+20\right)\)
\(=6000+900+100\)
\(=7000\)
\(=\left[\frac{1}{5}\left(\frac{1}{4}-\frac{1}{9}\right)+\frac{1}{5}\left(\frac{1}{9}-\frac{1}{14}\right)+\frac{1}{5}\left(\frac{1}{14}-\frac{1}{19}\right)+...+\frac{1}{5}\left(\frac{1}{44}-\frac{1}{49}\right)\right]\cdot\frac{1-\left(3+5+...+49\right)}{89}\)
\(=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-...+\frac{1}{44}-\frac{1}{49}\right)\cdot\frac{1-\left(52+52+...+52\right)\left\{12\text{ số 52}\right\}}{89}\)
\(=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{49}\right)\cdot\frac{1-624}{89}\)
\(=\frac{9}{196}\cdot-7=\frac{9}{28}\)
b) = \(\frac{3}{4}\div\)\(\left(-\frac{1}{3}+\frac{2}{3}+\frac{1}{2}\right)\)
= \(\frac{3}{4}\div\frac{5}{6}\)
= \(\frac{9}{10}\)
c) \(\frac{16.2^3}{4}\)
\(=4.8=32\)
\(a)\left|-\frac{1}{2}\right|+3^0+\frac{1}{4}+4+2021^0.\)
\(=\frac{1}{2}+1+\frac{1}{4}+4+1\)
\(=\left(\frac{1}{2}+\frac{1}{4}\right)+\left(1+4+1\right)\)
\(=\frac{3}{4}+6=\frac{27}{4}\)
\(b)\frac{3}{4}\div\left(-\frac{1}{3}\right)+\frac{3}{4}\div\frac{2}{3}+\frac{3}{4}\div\frac{1}{2}\)
\(=\frac{3}{4}\div\left(-\frac{1}{3}+\frac{2}{3}+\frac{1}{2}\right)\)
\(=\frac{3}{4}\div\frac{5}{6}=\frac{9}{10}\)
\(\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{\frac{4}{9}-\frac{4}{7}-\frac{4}{11}}+\frac{\frac{3}{5}-\frac{3}{25}-\frac{3}{125}-\frac{3}{625}}{\frac{4}{5}-\frac{4}{25}-\frac{4}{125}-\frac{4}{625}}\)
\(=\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{4\left(\frac{1}{9}-\frac{1}{7}-\frac{1}{11}\right)}+\frac{3\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}-\frac{1}{625}\right)}{4\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}-\frac{1}{625}\right)}\)
\(=\frac{1}{4}+\frac{3}{4}=\frac{4}{4}=1\)
− 1 24 − 1 4 − 1 2 − 7 8 = − 1 24 − 1 4 − − 3 8 = − 1 24 − 5 8 = − 2 3