Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e) = \(\dfrac{3}{2\left(x+3\right)}\) - \(\dfrac{x-6}{2x\left(x+3\right)}\)
= \(\dfrac{3x}{2x\left(x+3\right)}\) - \(\dfrac{x-6}{2x\left(x+3\right)}\) = \(\dfrac{3x-x+6}{2x\left(x+3\right)}\)
= \(\dfrac{2x-6}{2x\left(x+3\right)}\)
= \(\dfrac{2\left(x-3\right)}{2x\left(x+3\right)}\)
c) = \(\dfrac{2\left(a^3-b^3\right)}{3\left(a+b\right)}\) . \(\dfrac{6\left(a+b\right)}{a^2-2ab+b^2}\)
= \(\dfrac{-2\left(a+b\right)\left(a^2-2ab+b^2\right)}{3\left(a+b\right)}\) . \(\dfrac{6\left(a+b\right)}{a^2-2ab+b^2}\)
= \(\dfrac{-2\left(a+b\right)}{1}\) . \(\dfrac{2}{1}\) = -4 (a+b)
a) \(\dfrac{x^3}{x+1}+\dfrac{x^2}{x-1}+\dfrac{1}{x+1}+\dfrac{1}{1-x}\)
\(=\dfrac{x^3}{x+1}+\dfrac{x^2}{x-1}+\dfrac{1}{x+1}+\dfrac{-1}{x-1}\)
\(=\dfrac{x^3\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\dfrac{x^2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{1\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\dfrac{-1\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{x^4-x+x^3+x+x-1-x+1}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{x^4+x^3}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{x^3\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{x^3}{x-1}\)
b) \(\dfrac{x^3}{x-1}-\dfrac{x^2}{x+1}-\dfrac{1}{x-1}+\dfrac{1}{x+1}\)
\(=\dfrac{x^3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\dfrac{x^2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{1\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{1\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{x^3\left(x+1\right)-x^2\left(x-1\right)-1\left(x+1\right)+1\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x^4+x^3-x^3+x^2-x-1+x-1}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x^4+x^2-2}{\left(x-1\right)\left(x+1\right)}\)
c) \(\dfrac{4-2x+x^2}{2+x}-2-x\)
\(=\dfrac{4-2x+x^2}{2+x}-\dfrac{2\left(2+x\right)}{2+x}-\dfrac{x\left(2+x\right)}{2+x}\)
\(=\dfrac{4-2x+x^2-4-2x-2x-x^2}{2+x}\)
\(=\dfrac{-6x}{2+x}\)
Còn lại thì dễ rồi, bạn tự làm nha ^^
a: \(=x^5+1-x^5+1=2\)
b: \(=\left(6b^3+2b^2-5b-2\right)\left(3b^2-b+3\right)\)
\(=18b^5-6b^4+18b^3+6b^4-2b^3+6b^2-15b^3+5b^2-15b-6b^2+2b-6\)
\(=18b^5+b^3+5b^2-13b-6\)
c: \(=\left(2a^2+2ab+b^2\right)\cdot2a\left(b^2+2a^2-2ab\right)\)
\(=2a\left[\left(2a^2+b^2\right)^2-4a^2b^2\right]\)
\(=2a\left(4a^4+b^4\right)=8a^5+2ab^4\)