Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^5+x^3+x^2+1=\left(x^5+x^2\right)+\left(x^3+1\right)\)
\(=x^2\left(x^3+1\right)+\left(x^3+1\right)\)
\(=\left(x^3+1\right)\left(x^2+1\right)\)
Vậy phép chia đa thức trên cho \(x^3+1\) bằng \(x^2+1\)
b) \(x^2-5x+6=x^2-2x-3x+6\)
\(=\left(x^2-2x\right)-\left(3x-6\right)\)
\(=x\left(x-2\right)-3\left(x-2\right)\)
\(=\left(x-2\right)\left(x-3\right)\)
Vậy phép chia đa thức trên cho \(x-3\) được thương là \(x-2\)
a, (x4-2x3+2x-1):(x2-1) = \(\frac{\left(x^4-1\right)-\left(2x^3-2x\right)}{x^2-1}\)
= \(\frac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}\) =\(\frac{\left(x^2-1\right)\left(x^2+1-2x\right)}{x^2-1}\)
= \(x^2+1-2x\)= \(\left(x-1\right)^2\)
b, (8x3-6x2-5x+3):((4x+3)
Ta có : \(x^5+x^3+x^2+1=x^2\left(x^3+1\right)+\left(x^3+1\right)=\left(x^2+1\right)\left(x^3+1\right)\)
\(=>\left(x^5+x^3+x^2+1\right):\left(x^3+1\right)=\left(x^2+1\right)\left(x^3+1\right):\left(x^3+1\right)=x^2+1\)