K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
7 tháng 11 2020

ta chú ý hai hằng đẳng thức sau

\(x^3-3x^2+3x-1=\left(x-1\right)^3\)

\(y^2+2y+1=\left(y+1\right)^2\)

từ đây ta sẽ có \(\left(x^3-3x^2+3x-1\right).\left(2y^2+4y+2\right)=\left(x-1\right)^3.2\left(y+1\right)^2\)

vậy \(\left(x^3-3x^2+3x-1\right).\left(2y^2+4y+2\right):\left(x-1\right)\left(y+1\right)^2\)

\(=\left(x-1\right)^3.2\left(y+1\right)^2:\left(x-1\right)\left(y+1\right)^2=2\left(x-1\right)^2\)

3 tháng 9 2016

1 ) Thực hiện phép tính :

a ) \(-\frac{1}{3}xz\left(-9xy+15yz\right)+3x^2\left(2yz^2-yz\right)\)

\(=3x^2yz-5xyz^2+6x^2yz^2-3x^2yz\)

\(=-5xyz^2+6x^2yz^2\)

b ) \(\left(x-2\right)\left(x^2-5x+1\right)-x\left(x^2+11\right)\)

\(=x^3-5x^2-x-2x^2+10x-2-x^3-11x\)

\(=-7x^2-2x-2-x^3\)

c ) \(\left(x^3+5x^2-2x+1\right)\left(x-7\right)\)

\(=x^4+5x^3-2x^2+x-7x^3-35x^2+14x-7\)

\(=x^4-2x^3-37x^2+15x-7\)

d ) \(\left(2x^2-3xy+y^2\right)\left(x+y\right)\)

\(=2x^3-3x^2y+xy^2+2x^2y-3xy^2+y^3\)

\(=2x^3-x^2y-2xy^2+y^3\)

e ) \(\left[\left(x^2-2xy+2y^2\right)\left(x+2y\right)-\left(x^2-4y^2\right)\left(x-y\right)\right]2xy\)

( để xem lại )

2 Tìm x 

a ) \(6x\left(5x+3\right)+3x\left(1-10x\right)=7\)

\(\Leftrightarrow30x^2+18x+3x-30x^2=7\)

\(\Leftrightarrow21x=7\)

\(\Leftrightarrow x=3\)

b ) Sai đề 

c ) \(\left(x+1\right)\left(x+2\right)\left(x+5\right)-x^2\left(x+8\right)=27\)

( Để xem lại )

5 tháng 9 2016

mình chép đúng theo đề cô cho mà sao lại sai được ,hay cô cho sai đề

30 tháng 11 2017

Bài 1 

a)  (6x4y2 - 3x3y3) : 3x3y2 = 6x4y2  : 3x3y2 - 3x3y3 : 3x3y2 = 2x - y

b)  (2x - 1)(x2 - x + 3) = 2x3 - 2x2 + 6x - x2 + x - 3 = 2x3 - 3x2 + 7x - 3

Bài 2

1)     (x - 2)2 - (x - 3)2 = (x - 2 - x + 3)(x - 2 + x - 3) = 2x - 5>

2)     4x2 - 4xy + 2y2 + 1 = (4x2 - 4xy + y2) + y2 + 1 = (2x - y)2 + y2 + 1 > 0 

vì \(\hept{\begin{cases}\left(2x-y\right)^2\ge0\\y^2\ge0\end{cases}}\)

22 tháng 8 2018

\(1.5x\left(x^2+2x-1\right)-3x^2\left(x-2\right)=5x^3+10x^2-5x-3x^3+6x^2\)

                                                                  \(=2x^3+16x^2-5x\)

                                                                  \(=\left(2x^3-x\right)+\left(16x^2-4x\right)\)

                                                                  \(=x\left(2x^2-1\right)+4x\left(4x-1\right)\left(ĐCCM\right)\)

3 tháng 12 2017

- Viết 7 hằng đẳng thức đáng nhớ :

\(\left(A+B\right)^2=A^2+2AB+B^2\)

\(\left(A-B\right)^2=A^2-2AB+B^2\)

\(A^2-B^2=\left(A-B\right)\left(A+B\right)\)

\(\left(A+B\right)^3=A^3+3A^2B+3AB^2+B^3\)

\(\left(A-B\right)^3=A^3-3A^2B+3AB^2-B^3\)

\(A^3-B^3=\left(A-B\right)\left(A^2+AB+B^2\right)\)

\(A^3+B^3=\left(A+B\right)\left(A^2-AB+B^2\right)\)

- Áp dụng :

\(a,\left(x+2y\right)^2=x^2+4xy+4y^2\)

\(b,\left(\dfrac{5x-1}{2}\right)^2=\dfrac{\left(5x-1\right)^2}{2^2}=\dfrac{25x^2-10x+1}{4}\)

\(c,\left(\dfrac{1}{3x-3}\right)\left(\dfrac{1}{3x+3}\right)=\dfrac{1.1}{\left(3x-3\right)\left(3x+3\right)}=\dfrac{1}{9x^2-9}\)

\(d,\left(2x+3\right)^3=8x^3+36x^2+54x+27\)

\(e,\left(\dfrac{1}{4y-2x}\right)^2=\dfrac{1}{\left(4y-2x\right)^2}=\dfrac{1}{16y^2-16xy+4x^2}\)

\(f,\left(2x-y\right)\left(4x^2+2xy+y^2\right)=\left(2x\right)^3-y^3=8x^3-y^3\)

\(g,\left(x+3\right)\left(x^2-3x+9\right)=x^3+27\)

30 tháng 9 2017

a) x2 - 2x - 4y2 - 4y

= (x2 - 4y2) - (2x + 4y)

= (x + 2y)(x - 2y) - 2(x + 2y)

= (x + 2y)(x - 2y - 2)

= (x + 2y)[x - 2(y + 1)]

b) x4 + 2x3 - 4x - 4

= (x4 - 4) + ( 2x3 - 4x)

= (x2 - 2)(x2 + 2) + 2x(x2 - 2)

= (x2 - 2)(x2 + 2 + 2x)

c) x3 + 2x2y - x -2y

= (x3 - x) + (2x2y - 2y)

= x(x2 - 1) + 2y(x2 - 1)

= (x + 2y)(x2 - 1)

24 tháng 7 2019

\(a,VT=\left(a+b+c\right)\left(a-b+c\right)\)

\(=\left(a+c+b\right)\left(a+c-b\right)\)

\(=\left(a+c\right)^2-b^2\)

\(=a^2+2ac+c^2-b^2=VP\)

\(b,VT=\left(3x+2y\right)\left(3x-2y\right)-\left(4x-2y\right)\left(4x+2y\right)\)

\(=9x^2-4y^2-16x^2+4y^2=-7x^2=VP\)

\(c,VT=x^3-1-x^3-1=-2=VP\)

\(d,VT=8x^3+1-8x^3+1=2=VP\)

\(e,VT=\left(x^2+2xy+4y^2\right)\left(x-2y-2x+1\right)\)

\(=\left(x^2+2xy+4y^2\right)\left(-x-2y+1\right)\)

\(=-x^3-2x^2y+x^2-2x^2y-4xy^2+2xy-4xy^2-8y^3+4y^2\)

( bn kiểm tra lại đề nhé)

9 tháng 8 2019

đề là j

9 tháng 8 2019

\(a,4y\left(x-1\right)-\left(1-x\right)\)

\(=4y\left(x-1\right)+\left(x-1\right)\)

\(=\left(4y+1\right)\left(x-1\right)\)

\(b,18x^2\left(3+x\right)+3\left(x+3\right)\)

\(=\left(18x^2+3\right)\left(3+x\right)\)