Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left[\frac{2xy}{\left(x-y\right).\left(x+y\right)}+\frac{x-y}{2.\left(x+y\right)}\right]:\frac{x+y}{2x}+\frac{x}{y-x}\)
\(=\frac{4xy+\left(x-y\right).\left(x-y\right)}{2.\left(x-y\right).\left(x+y\right)}.\frac{2x}{x+y}+\frac{x}{y-x}\)
\(=\frac{x^2+2xy+y^2}{\left(x-y\right).\left(x+y\right)^2}.x+\frac{x}{y-x}\)
\(=\frac{x.\left(x+y\right)^2}{\left(x-y\right).\left(x+y\right)^2}+\frac{x}{y-x}\)
\(=\frac{x}{x-y}-\frac{x}{x-y}=0\)
Bạn giùm mik nhé, tks bạn nhiều (:
Ta co : x+y=2
(x+y)^2=4
x^2+2xy+y^2=4
x^2+y^2+2xy=4
10+2xy=4
2xy=-6
xy=-3
Ta lai co : x^3+y^3 =(x+y)(x^2+xy+y^2)
=(x+y)(x^2+y^2-xy)
=2.[10-(-3)]
=26
---------
Nếu cả 3 số x, y, z đều không chia hết cho 2 thì x+y+z không chia hết cho 2 (vô lý)
Ta có: x+y+z ⋮ 6 ⋮ 2
Do đó trong ba số tồn tại một số chia hết cho 2, suy ra xyz ⋮ 2.
Ta có:
M=(x+y)(y+z)(z+x)−2xyz=(x+y+z)(xy+yz+zx)−3xyz
Vì x+y+z ⋮ 6 và xyz ⋮ 2 nên M ⋮ 6
Tick nha
Nếu cả 3 số x, y, z đều không chia hết cho 2 thì
x+y+z không chia hết cho 2 (vô lý)
Ta có: x+y+z ⋮ 6 ⋮ 2
Do đó trong ba số tồn tại một số chia hết cho 2,
suy ra xyz ⋮ 2.
Ta có:
M=(x+y)(y+z)(z+x)−2xyz=(x+y+z)(xy+yz+zx)−3xyz
Vì x+y+z ⋮ 6 và xyz ⋮ 2
nên M ⋮ 6
b) (ko chép lại đề nhé) \(=\frac{x^2\left(x-y\right)^2}{\left(x+y\right)\left(x-y\right)}\cdot\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{xy\left(x^2-xy+y^2\right)}=\frac{x\left(x-y\right)}{y}\)
Đơn thức đầu tiên trong mẫu của phân thức thứ 2 có lẽ là \(x^3y\)
\(a)\)\(M=x^3-3xy\left(x-y\right)-y^3-x^2+2xy-y^2\) ( đề nhầm đúng ko bn )
\(M=\left(x^3-3x^2y+3xy^2-y^3\right)-\left(x^2-2xy+y^2\right)\)
\(M=\left(x-y\right)^3-\left(x-y\right)^2\)
\(M=7^3-7^2\)
\(M=294\)
Chúc bạn học tốt ~
Mấy bài này khó :( nghĩ được bài nào làm bài đấy nhé, bạn thông cảm
a, Dùng phương pháp kẹp
Do \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
\(\Rightarrow x^3+x^2+x+1>x^3\)
\(\Rightarrow y^3>x^3\)
\(\Rightarrow y>x\)(1)
Xét hiệu \(\left(x+2\right)^3-y^3=x^3+6x^2+12x+8-y^3\)
\(=x^3+6x^2+12x+8-x^3-x^2-x-1\)
\(=5x^2+11x+7\)
\(=5\left(x+\frac{11}{10}\right)^2+\frac{19}{20}>0\forall x\)
\(\Rightarrow\left(x+2\right)^3>y^3\)
\(\Rightarrow x+2>y\)(2)
Từ \(\left(1\right)\&\left(2\right)\Rightarrow x< y< x+2\)
Mà \(x;y\inℤ\Rightarrow y=x+1\)
Thế vào pt ban đầu đc \(x^3+x^2+x+1=\left(x+1\right)^3\)
\(\Leftrightarrow x^3+x^2+x+1=x^3+3x^2+3x+1\)
\(\Leftrightarrow2x^2+2x=0\)
\(\Leftrightarrow2x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(tm\right)}\)
*Với x = 0 => y= 1
*Với x = -1 => y = 0
Vậy ...