\(\dfrac{2}{\sqrt{6}-2}+\dfrac{2}{\sqrt{6}+2}+\dfrac{5}{\sqrt...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2023

\(\dfrac{2}{\sqrt[]{6}-2}+\dfrac{2}{\sqrt[]{6}+2}+\dfrac{5}{\sqrt[]{6}}\)

\(=\dfrac{2}{\sqrt[]{6}-2}+\dfrac{2}{\sqrt[]{6}+2}+\dfrac{5\sqrt[]{6}}{6}\)

\(=\dfrac{12\left(\sqrt[]{6}+2\right)}{6\left(\sqrt[]{6}-2\right)\left(\sqrt[]{6}+2\right)}+\dfrac{12\left(\sqrt[]{6}-2\right)}{6\left(\sqrt[]{6}-2\right)\left(\sqrt[]{6}+2\right)}+\dfrac{5\sqrt[]{6}\left(\sqrt[]{6}-2\right)\left(\sqrt[]{6}+2\right)}{6\left(\sqrt[]{6}-2\right)\left(\sqrt[]{6}+2\right)}\)

\(=\dfrac{12\sqrt[]{6}+24+12\sqrt[]{6}-24+5\sqrt[]{6}\left(6-2\right)}{6\left(6-2\right)}\)

\(=\dfrac{24\sqrt[]{6}+20\sqrt[]{6}}{24}\)

\(=\dfrac{44\sqrt[]{6}}{24}\)

\(=\dfrac{11\sqrt[]{6}}{6}\)

7 tháng 9 2023

bài này mà cx đi hỏi má

 

a: \(=\dfrac{2\sqrt{7}-10-6+2\sqrt{7}}{4}+4+2\sqrt{7}-\dfrac{20}{9}+\dfrac{5}{9}\sqrt{7}\)

\(=\sqrt{7}-4+4+2\sqrt{7}-\dfrac{20}{9}+\dfrac{5}{9}\sqrt{7}\)

\(=\dfrac{32}{9}\sqrt{7}-\dfrac{20}{9}\)

b: \(=\dfrac{2\sqrt{6}+4+2\sqrt{6}-4}{2}+\dfrac{5\sqrt{6}}{6}\)

\(=2\sqrt{6}+\dfrac{5}{6}\sqrt{6}=\dfrac{17}{6}\sqrt{6}\)

a,

\(\dfrac{\sqrt{7}-5}{2}-\dfrac{6-2\sqrt{7}}{4}+\dfrac{6}{\sqrt{7}-2}-\dfrac{5}{4+\sqrt{7}}\)

\(=\dfrac{\sqrt{7}-5}{2}-\dfrac{3-\sqrt{7}}{2}+\dfrac{6\sqrt{7}+12}{3}-\dfrac{20-5\sqrt{7}}{9}\)

\(=\dfrac{2\sqrt{7}-8}{2}+\dfrac{18\sqrt{7}+36}{9}-\dfrac{20-5\sqrt{7}}{9}\)

\(=\sqrt{7}-4+\dfrac{23\sqrt{7}+16}{9}\)

\(=\dfrac{9\sqrt{7}-36}{9}+\dfrac{23\sqrt{7}+16}{9}=\dfrac{32\sqrt{7}-20}{9}\)

6 tháng 9 2018

\(a.\left(\dfrac{\sqrt{6}-\sqrt{3}}{5\sqrt{2}-5}+\dfrac{\sqrt{5}}{5}\right):\dfrac{2}{\sqrt{5}-\sqrt{3}}=\left[\dfrac{\sqrt{3}\left(\sqrt{2}-1\right)}{5\left(\sqrt{2}-1\right)}+\dfrac{\sqrt{5}}{5}\right]:\dfrac{2\left(\sqrt{5}+\sqrt{3}\right)}{2}=\dfrac{\sqrt{3}+\sqrt{5}}{5}.\dfrac{1}{\sqrt{5}+\sqrt{3}}=\dfrac{1}{5}\)

\(b.\dfrac{\sqrt{6}-3}{\sqrt{3}-\sqrt{2}}-\dfrac{4}{\sqrt{3}+1}+3\sqrt{3}=\dfrac{-\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}-\dfrac{4}{\sqrt{3}+1}+3\sqrt{3}=2\sqrt{3}-\dfrac{4}{\sqrt{3}+1}=\dfrac{2\sqrt{3}\left(\sqrt{3}+1\right)-4}{\sqrt{3}+1}=\dfrac{2+2\sqrt{3}}{\sqrt{3}+1}=\dfrac{2\left(1+\sqrt{3}\right)}{1+\sqrt{3}}=2\)

6 tháng 9 2018

a. \(2\sqrt{16}+\sqrt{2}.\sqrt{0,02}-\dfrac{\sqrt{12,1}}{\sqrt{0,1}}=2.4+\sqrt{0,04}-\sqrt{\dfrac{12,1}{0,1}}=8+0,2-11=-2,8\)b. \(5\sqrt{20}-4\sqrt{45}+\dfrac{15}{\sqrt{5}}=10\sqrt{5}-12\sqrt{5}+3\sqrt{5}=\sqrt{5}\)

c. \(\left(\dfrac{\sqrt{6}-\sqrt{3}}{5\sqrt{2}-5}+\dfrac{\sqrt{5}}{5}\right):\dfrac{2}{\sqrt{5}-\sqrt{3}}=\left(\dfrac{\sqrt{3}\left(\sqrt{2}-1\right)}{5\left(\sqrt{2}-1\right)}+\dfrac{\sqrt{5}}{5}\right).\dfrac{\sqrt{5}-\sqrt{3}}{2}=\dfrac{\sqrt{3}+\sqrt{5}}{5}.\dfrac{\sqrt{5}-\sqrt{3}}{2}=\dfrac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{5.2}=\dfrac{5-3}{10}=\dfrac{2}{10}=\dfrac{1}{5}\)d. \(\dfrac{\sqrt{6}-3}{\sqrt{3}-\sqrt{2}}-\dfrac{4}{\sqrt{3}+1}+3\sqrt{3}=\dfrac{-\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}-\dfrac{4}{\sqrt{3}+1}+3\sqrt{3}=3\sqrt{3}-\sqrt{3}-\dfrac{4}{\sqrt{3}+1}=\dfrac{\left(\sqrt{3}+1\right).2\sqrt{3}-4}{\sqrt{3}+1}=\dfrac{6+2\sqrt{3}-4}{\sqrt{3}+1}=\dfrac{2+2\sqrt{3}}{\sqrt{3}+1}=\dfrac{ 2\left(\sqrt{3}+1\right)}{\sqrt{3}+1}=2\)

\(=\dfrac{\sqrt{3}+\sqrt{2}-1}{2+\sqrt{6}}+\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+1}\cdot\left(\dfrac{2\sqrt{3}+\sqrt{18}+2\sqrt{3}-\sqrt{18}}{-2}\right)-\dfrac{1}{\sqrt{2}}\)

\(=\dfrac{\sqrt{3}+\sqrt{2}-1}{2+\sqrt{6}}+\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+1}\cdot\dfrac{4\sqrt{3}}{-2}\)

\(=\dfrac{\left(\sqrt{3}+\sqrt{2}-1\right)\left(2-\sqrt{6}\right)}{-2}+\dfrac{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}-1\right)}{1}\cdot\dfrac{-4\sqrt{3}}{2}\)

\(=\dfrac{2\sqrt{3}-3\sqrt{2}+2\sqrt{2}-2\sqrt{3}-2+\sqrt{6}+4\sqrt{3}\left(2-\sqrt{2}-\sqrt{6}+\sqrt{3}\right)}{-2}\)

\(=\dfrac{\sqrt{2}-2+\sqrt{6}+8\sqrt{3}-4\sqrt{6}-12\sqrt{2}+12}{-2}\)

\(=-\dfrac{-11\sqrt{2}+8\sqrt{3}-3\sqrt{6}+10}{2}\)

22 tháng 8 2017

Căn bậc hai

22 tháng 8 2017

đến đấy mk bí r

a: \(=\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)^2\cdot\left(\sqrt{3}-\sqrt{2}\right)\)

\(=\left(5-2\sqrt{6}\right)\left(\sqrt{3}-\sqrt{2}\right)\)

\(=5\sqrt{3}-5\sqrt{2}-6\sqrt{2}+4\sqrt{3}=9\sqrt{3}-11\sqrt{2}\)

b: \(=\dfrac{\sqrt{2}}{2+\sqrt{3}+1}+\dfrac{\sqrt{2}}{2-\sqrt{3}+1}\)

\(=\dfrac{\sqrt{2}}{3+\sqrt{3}}+\dfrac{\sqrt{2}}{3-\sqrt{3}}\)

\(=\dfrac{3\sqrt{2}-\sqrt{6}+3\sqrt{2}+\sqrt{6}}{9-3}=\dfrac{6\sqrt{2}}{6}=\sqrt{2}\)

d: \(=2\sqrt{2}-\sqrt{6}-3\sqrt{2}+\sqrt{6}=-\sqrt{2}\)

bài 1 :Trục căn thức ở mẫu và rút ngọn nếu được. a) \(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\) b) \(\dfrac{26}{5-2\sqrt{3}}\) c) \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}\) d) \(\dfrac{2\sqrt{10}-5}{4-\sqrt{10}}\) g) \(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1+1}}\) bài 2: tính giá trị các biểu thức sau: a)\(\dfrac{2}{\sqrt{7}-5}-\dfrac{2}{\sqrt{7}+5}\) b)...
Đọc tiếp

bài 1 :Trục căn thức ở mẫu và rút ngọn nếu được.

a) \(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\) b) \(\dfrac{26}{5-2\sqrt{3}}\) c) \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}\)

d) \(\dfrac{2\sqrt{10}-5}{4-\sqrt{10}}\) g) \(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1+1}}\)

bài 2: tính giá trị các biểu thức sau:

a)\(\dfrac{2}{\sqrt{7}-5}-\dfrac{2}{\sqrt{7}+5}\) b) \(\dfrac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\dfrac{\sqrt{7}-\sqrt{5}}{\sqrt{7}-\sqrt{5}}\)

c) \(\sqrt{12}+\sqrt{48}-\sqrt{(\sqrt{75}-\sqrt{108)}^2}\)

bài 3: thực hiện phép tính.

a) \(\sqrt{(3-2\sqrt{2})^2}+\sqrt{(3+2\sqrt{2})^2}\) b)\(\sqrt{(5-2\sqrt{6})^2}-\sqrt{(5+2\sqrt{6})^2}\)

c) \(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\) d) \(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)

bài 4: thực hiện các phép tính sau.

a) \(\sqrt{125}-4\sqrt{45}+3\sqrt{20}-\sqrt{80}\) b) \(2\sqrt{\dfrac{27}{4}}-\sqrt{\dfrac{48}{9}}\dfrac{2}{5}\sqrt{\dfrac{75}{16}}\)

c) \(\sqrt{8}+\sqrt{72}+\sqrt{98}-5\sqrt{128}\) d) \(2\sqrt{\dfrac{9}{8}}-\sqrt{\dfrac{49}{2}}+\sqrt{\dfrac{25}{18}}\)

bài 5: rút ngọn biểu thức với giả thiết các biểu thức chữ đều có nghĩa.

a) \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}(x>0;y>0)\)

b) \(\dfrac{a+\sqrt{ab}}{b+\sqrt{ab}}(a;b\ge0)\)

bài 6: giải các phương trình sau:\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

2
7 tháng 8 2018

mn ơi giải giúp mik bài não cũng đc a

mình cảm ơn mn nhiều ạ =))

7 tháng 8 2018

tớ nghĩ tớ giải đc 1-2 bài gì đó nhưng tớ ko bít bấm can lm sao giải cho cậu đc

a: \(=2\cdot4+0.2-11=8-11+0.2=-2.8\)

b: \(=10\sqrt{5}-12\sqrt{5}+3\sqrt{5}=\sqrt{5}\)

c: \(=\left(\dfrac{\sqrt{3}\left(\sqrt{2}-1\right)}{5\left(\sqrt{2}-1\right)}+\dfrac{\sqrt{5}}{5}\right)\cdot\dfrac{\sqrt{5}-\sqrt{3}}{2}\)

\(=\dfrac{\sqrt{5}+\sqrt{3}}{5}\cdot\dfrac{\sqrt{5}-\sqrt{3}}{2}=\dfrac{1}{2}\)

d: \(=-\sqrt{3}+2-2\sqrt{3}+3\sqrt{3}=2\)