Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(-0,8\sqrt{\left(-0,125\right)^2}=-0,8.\left|-0,125\right|=-0.8.0,125=-\dfrac{1}{10}\)
b) \(\sqrt{\left(-2\right)^6}=\sqrt{\left(\left(-2\right)^3\right)^2}=\left|\left(-2\right)^3\right|=8\)
c) \(\sqrt{\left(\sqrt{3}-2\right)^2}=\left|\sqrt{3}-2\right|=2-\sqrt{3}\)
d) \(\sqrt{\left(2\sqrt{2}-3\right)^2}=\left|2\sqrt{2}-3\right|=3-2\sqrt{2}\)
\(\left(\sqrt{6}-3\sqrt{3}+5\sqrt{2}-\frac{1}{2}\sqrt{8}\right)2\sqrt{6}\)
\(=12-6\sqrt{18}+10\sqrt{12}-\sqrt{48}\)
\(=12-6\sqrt{3.6}+10\sqrt{3.2^2}-\sqrt{3.4^2}\)
\(=12-6\sqrt{3}.\sqrt{6}+20\sqrt{3}-4\sqrt{3}\)
\(=12\sqrt{6}+\left(-6+20-4\right)\sqrt{3}\)
\(=12\sqrt{6}+10\sqrt{3}\)
mk ko biết mk làm có đúng ko nữa vì mk năm nay mới lên lớp 9 thoy
mk làm đc là do mk tự học
nếu thấy đúng thì k để mk biết nhé
a) Ta có: (3-2i)(2-3i)=(3.2-2.3)+(-3.3-2.2)i=-13i
b) Ta có: (-1+i)(3+7i)=(-1.3-1.7)+(-1.7+1.3)i=-10-4i
c) Ta có: (5(4+3i)=5.4+5.3i=20+15i
d) Ta có: (-2-5i)4i=(-2.0+5.4)+(2.4-5.0)i=20-8i
\(\dfrac{2}{\sqrt[]{6}-2}+\dfrac{2}{\sqrt[]{6}+2}+\dfrac{5}{\sqrt[]{6}}\)
\(=\dfrac{2}{\sqrt[]{6}-2}+\dfrac{2}{\sqrt[]{6}+2}+\dfrac{5\sqrt[]{6}}{6}\)
\(=\dfrac{12\left(\sqrt[]{6}+2\right)}{6\left(\sqrt[]{6}-2\right)\left(\sqrt[]{6}+2\right)}+\dfrac{12\left(\sqrt[]{6}-2\right)}{6\left(\sqrt[]{6}-2\right)\left(\sqrt[]{6}+2\right)}+\dfrac{5\sqrt[]{6}\left(\sqrt[]{6}-2\right)\left(\sqrt[]{6}+2\right)}{6\left(\sqrt[]{6}-2\right)\left(\sqrt[]{6}+2\right)}\)
\(=\dfrac{12\sqrt[]{6}+24+12\sqrt[]{6}-24+5\sqrt[]{6}\left(6-2\right)}{6\left(6-2\right)}\)
\(=\dfrac{24\sqrt[]{6}+20\sqrt[]{6}}{24}\)
\(=\dfrac{44\sqrt[]{6}}{24}\)
\(=\dfrac{11\sqrt[]{6}}{6}\)
\(=\left[\sqrt{2.2.6}-\sqrt{4.4.3}+\sqrt{5.5.2}-\sqrt{\left(\frac{1}{4}\right)^2.8}\right].\sqrt{54}\)
\(=\left[\sqrt{24}-\sqrt{48}+\sqrt{50}-\sqrt{\frac{1}{2}}\right].\sqrt{54}\)
\(=\sqrt{24.54}-\sqrt{48.54}+\sqrt{50.54}-\sqrt{\frac{1}{2}.54}\)
\(=\sqrt{1296}-\sqrt{2592}+\sqrt{2700}-\sqrt{27}\)
\(=36-\sqrt{1296.2}+10\sqrt{27}-\sqrt{27}\)
\(=36-36\sqrt{2}+9\sqrt{27}\)
\(=36-36\sqrt{2}+27\sqrt{3}\)
a) \(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)
\(=2\sqrt{5}+2+\sqrt{5}-2\)
\(=3\sqrt{5}\)
b) \(\sqrt{17-12\sqrt{2}}+\sqrt{9+4\sqrt{2}}\)
\(=3-2\sqrt{2}+2\sqrt{2}-1\)
=2
c) \(\sqrt{6-4\sqrt{2}}+\sqrt{22-12\sqrt{2}}\)
\(=2-\sqrt{2}+3\sqrt{2}-2\)
\(=2\sqrt{2}\)
\(=\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{\sqrt{2}}{2}\right)\cdot3\sqrt{6}\\ =36-36\sqrt{2}+30\sqrt{3}-3\sqrt{3}\\ =36-36\sqrt{2}+27\sqrt{3}\)
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\)\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+2+2}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(\sqrt{2}+1\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\sqrt{2}+1\)
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\sqrt{2}\)
d) 2 3 - 6 8 - 2 = 12 - 6 2 2 - 2 = 6 2 - 1 2 2 - 1 = 6 2