\(\left(2-\frac{3}{2}\right).\left(2-\frac{4}{3}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2018

a) \(\left(2-\frac{3}{2}\right)\left(2-\frac{4}{3}\right)\left(2-\frac{5}{4}\right)\left(2-\frac{6}{4}\right)\)

\(=\frac{1}{3}\left(-\frac{4}{3}+2\right)\left(-\frac{5}{4}+2\right)\left(-\frac{6}{4}+2\right)\)

\(=\frac{1}{2}.\frac{2}{3}\left(-\frac{5}{4}+2\right)\left(-\frac{6}{4}+2\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}\left(-\frac{6}{4}+2\right)\)

\(=\frac{1.2.3\left(2-\frac{3}{2}\right)}{2.3.4}\)

\(=\frac{1.3\left(2-\frac{3}{2}\right)}{3.4}\)

\(=\frac{1.\left(2-\frac{3}{2}\right)}{4}\)

\(=\frac{2-\frac{3}{4}}{4}\)

\(=\frac{1}{2.4}\)

\(=\frac{1}{8}\)

b) \(\left(\frac{2003}{2004}+\frac{2004}{2003}\right):\frac{8028025}{8028024}\)

\(=\frac{8028024\left(\frac{2003}{2004}+\frac{2004}{2003}\right)}{8028025}\)

\(=\frac{8028024.\frac{8028025}{4014012}}{8028025}\)

\(=\frac{16056050}{8028025}\)

= 2

10 tháng 11 2016

Bài 1:

\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)

Ta thấy:

\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)

\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\frac{10}{11}=0\)

\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)

 

 

10 tháng 11 2016

Bài 2:

Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)

\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)

3 tháng 4 2017

\(=\frac{72}{5}\)

8 tháng 2 2018

bấm máy tính hay tính tay ra

=72/5

27 tháng 7 2017

\(\frac{\left(\frac{2}{3}\right)^3.\left(\frac{-3}{4}\right)^2.\left(-1\right)^{2003}}{\left(\frac{2}{5}\right)^2.\left(\frac{-5}{12}\right)^3}\)=\(\frac{\frac{8}{27}.\frac{9}{16}.-1}{\frac{4}{25}.\frac{-125}{1728}}\)=\(\frac{\frac{-1}{6}}{-\frac{5}{432}}\)=\(\frac{-1}{6}:\frac{-5}{432}=\frac{-1}{6}.-\frac{432}{5}=\frac{72}{5}\)

Bài này dễ mà bn

17 tháng 3 2019

Bằng 72/5 nhé

23 tháng 8 2018

\(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)...\left(\frac{1}{2002}-1\right)\left(\frac{1}{2003}-1\right)\)

    \(=\left(-\frac{1}{2}\right)\left(-\frac{2}{3}\right)...\left(-\frac{2001}{2002}\right)\left(-\frac{2002}{2003}\right)\)

     \(=\frac{-1.\left(-2\right).....\left(-2001\right)\left(-2002\right)}{2.3....2002.2003}\)

      \(=\frac{1}{2003}\)

23 tháng 10 2017

\(\left[6.\left(-\dfrac{1}{3}\right)^2-3.\left(-\dfrac{1}{3}\right)+1\right]:\left(-\dfrac{1}{3}-1\right)\)

=\(\left[6.\dfrac{1}{9}-\left(-1\right)+1\right]:\left(-\dfrac{4}{3}\right)\)

=\(\left[\dfrac{2}{3}-\left(-1\right)+1\right]:\left(-\dfrac{4}{3}\right)\)

=\(\dfrac{8}{3}:\left(-\dfrac{4}{3}\right)\)

=-2