Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1-2-3+4+5-6-7+8...+993-994-995+996+997\)
\(A=\left(1-2-3+4\right)+\left(5-6-7+8\right)...+\left(993-994-995+996\right)+997\)
\(A=0+0+...+0+997=997\)
Lời giải:
$C=(1-2-3+4)+(5-6-7+8)+...+(993-994-995+996)+997$
$=0+0+....+0+997=997$
Số số hạng của C:
997 - 1 + 1 = 997 (số)
Do 997 chia 4 dư 1 nên ta có thể nhóm các số hạng của C thành các nhóm mà mỗi nhóm có 4 số hạng và dư 1 số hạng như sau:
C = (1 - 2 - 3 + 4) + (5 - 6 - 7 + 8) + ... + (993 - 994 - 995 + 996) + 997
= 0 + 0 + ... + 0 + 997
= 997
\(1+2-3-4+5+6-7-8+9+...+994-995-996+997+998\)
Số các số hạng là: \(\dfrac{998-1}{1}+1=998\left(số\right)\)
Nhóm 4 số 1 cặp ta được \(998:4=249\)(cặp) dư 2 số
\(1+2-3-4+5+6-7-8+9+...+994-995-996+997+998=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(993+994-995-996\right)+997+998=-4-4...-4+997+998=\left(-4\right).249+997+998=999\)
Ta có: \(1+2-3-4+5+6-7-8+...+994-995-996+997+998\)
\(=\left(-4\right)\cdot249+1995\)
\(=999\)
Xem lại đề. Viết lỗi.
\(C=\left(1+4-2-3\right)+\left(5+8-6-7\right)+...+\left(993+996-994-995\right)+997\)
\(=0+0+...+0+997\)
\(=997\)