\(\sqrt{6}\) + \(\sqrt{2}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2020

\(A=\sqrt{2}\left(\sqrt{3}+1\right)\left(\sqrt{3}-2\right)\sqrt{\sqrt{3}+2}\)

=>   \(A=\left(\sqrt{3}+1\right)\left(\sqrt{3}-2\right)\sqrt{4+2\sqrt{3}}\)

=>   \(A=\left(\sqrt{3}+1\right)\left(\sqrt{3}-2\right)\sqrt{\left(\sqrt{3}+1\right)^2}\)

=>   \(A=\left(\sqrt{3}+1\right)^2\left(\sqrt{3}-2\right)\)

=>   \(A=\left(4+2\sqrt{3}\right)\left(\sqrt{3}-2\right)\)

=>   \(A=4\sqrt{3}-8+6-4\sqrt{3}\)

=>   \(A=-8+6=-2\)

VẬY \(A=-2\)

12 tháng 8 2020

\(B=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right).\sqrt{2}.\sqrt{4-\sqrt{15}}\)

=>   \(B=\sqrt{8-2\sqrt{15}}\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\)

=> \(B=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\left(\sqrt{5}-\sqrt{3}\right)\left(4+\sqrt{15}\right)\)

=>  \(B=\left(\sqrt{5}-\sqrt{3}\right)^2\left(4+\sqrt{15}\right)\)

=>   \(B=\left(8-2\sqrt{15}\right)\left(4+\sqrt{15}\right)\)

=>   \(B=32+8\sqrt{15}-8\sqrt{15}-30\)

=>   \(B=2\)

VẬY    \(B=2\)

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

2.1

\(A=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}=\sqrt{5+2\sqrt{5.1}+1}-\sqrt{5-2\sqrt{5.1}+1}\)

\(=\sqrt{(\sqrt{5}+1)^2}-\sqrt{(\sqrt{5}-1)^2}=|\sqrt{5}+1|-|\sqrt{5}-1|=2\)

2.2

\(B\sqrt{2}=\sqrt{8+2\sqrt{15}}+\sqrt{8-2\sqrt{15}}-2\sqrt{6-2\sqrt{5}}\)

\(=\sqrt{3+2\sqrt{3.5}+5}+\sqrt{3-2\sqrt{3.5}+5}-2\sqrt{5-2\sqrt{5.1}+1}\)

\(=\sqrt{(\sqrt{3}+\sqrt{5})^2}+\sqrt{(\sqrt{3}-\sqrt{5})^2}-2\sqrt{(\sqrt{5}-1)^2}\)

\(=|\sqrt{3}+\sqrt{5}|+|\sqrt{3}-\sqrt{5}|-2|\sqrt{5}-1|=2\)

$\Rightarrow B=\sqrt{2}$

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

Bài 1:

1. ĐKXĐ: \(\left\{\begin{matrix} 2x-1\geq 0\\ x-3\geq 0\\ 5-x>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x\geq 3\\ x< 5\end{matrix}\right.\Leftrightarrow 3\leq x< 5\)

2.

ĐKXĐ: \(\left\{\begin{matrix} x-1\geq 0\\ 2-x\geq 0\\ x+1>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x\leq 2\\ x>-1\end{matrix}\right.\Leftrightarrow 1\leq x\leq 2\)

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

a)

\((\sqrt{3}-2\sqrt{12}+2\sqrt{4})(\sqrt{27}+\sqrt{144}-2\sqrt{16})\)

\(=(\sqrt{3}-4\sqrt{3}+4)(3\sqrt{3}+12-8)\)

\(=(-3\sqrt{3}+4)(3\sqrt{3}+4)=4^2-(3\sqrt{3})^2=16-27=-11\)

b)

\((2\sqrt{5}+2\sqrt{3})^2-4\sqrt{60}\)

\(=(2\sqrt{5})^2+2.2\sqrt{5}.2\sqrt{3}+(2\sqrt{3})^2-8\sqrt{15}\)

\(=32+8\sqrt{15}-8\sqrt{15}=32\)

c)

\(\sqrt{6}(3\sqrt{12}-4\sqrt{3}+\sqrt{48}-5\sqrt{6})\)

\(=3\sqrt{72}-4\sqrt{18}+\sqrt{6.48}-5.\sqrt{36}\)

\(=18\sqrt{2}-12\sqrt{2}+12\sqrt{2}-30=18\sqrt{2}-30\)

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

d)

\((\sqrt{2}-\sqrt{3})(\sqrt{6}+\sqrt{2})(\sqrt{2}+\sqrt{3})\)

\(=(\sqrt{2}-\sqrt{3})(\sqrt{2}+\sqrt{3})(\sqrt{6}+\sqrt{2})\)

\(=(2-3)(\sqrt{6}+\sqrt{2})=-(\sqrt{6}+\sqrt{2})\)

e) Biểu thức bên trong căn lớn âm nên biểu căn bậc 2 không có nghĩa

f)

\((\frac{2}{\sqrt{3}-1}+\frac{3}{\sqrt{3}-2}+\frac{15}{3-\sqrt{3}}).\frac{1}{\sqrt{3}+5}\)

\(=(\frac{2\sqrt{3}+15}{3-\sqrt{3}}+\frac{3}{\sqrt{3}-2}).\frac{1}{\sqrt{3}+5}\)

\(=\frac{2\sqrt{3}+15)(\sqrt{3}-2)+3(3-\sqrt{3})}{(3-\sqrt{3})(\sqrt{3}-2)}.\frac{1}{\sqrt{3}+5}\)

\(=\frac{-15+8\sqrt{3}}{(-9+5\sqrt{3})(\sqrt{3}+5)}=\frac{-15+8\sqrt{3}}{-30+16\sqrt{3}}=\frac{-15+8\sqrt{3}}{2(-15+8\sqrt{3})}=\frac{1}{2}\)

20 tháng 7 2018

\(A=\sqrt{4+\sqrt{15}}-\sqrt{4-\sqrt{15}}-\sqrt{2-\sqrt{3}}=\dfrac{\sqrt{5+2\sqrt{5}.\sqrt{3}+3}-\sqrt{5-2\sqrt{5}.\sqrt{3}+3}-\sqrt{3-2\sqrt{3}+1}}{\sqrt{2}}=\dfrac{\sqrt{5}+\sqrt{3}-\sqrt{5}+\sqrt{3}-\sqrt{3}+1}{\sqrt{2}}=\dfrac{\sqrt{3}+1}{\sqrt{2}}\)

\(B=\sqrt{9-2\sqrt{14}}+\sqrt{9+2\sqrt{14}}=\sqrt{7-2\sqrt{7}.\sqrt{2}+2}+\sqrt{7+2\sqrt{7}.\sqrt{2}+2}=\sqrt{7}-\sqrt{2}+\sqrt{7}+\sqrt{2}=2\sqrt{7}\)

\(C=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{5-2\sqrt{5}.\sqrt{3}+3}=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)^2=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)=2\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)=2\left(16-15\right)=2\)

\(D=\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}=\dfrac{2\sqrt{2}+\sqrt{6}}{2+\sqrt{3+2\sqrt{3}+1}}+\dfrac{2\sqrt{2}-\sqrt{6}}{2-\sqrt{3-2\sqrt{3}+1}}=\dfrac{\left(2\sqrt{2}+\sqrt{6}\right)\left(3-\sqrt{3}\right)+\left(2\sqrt{2}-\sqrt{6}\right)\left(3+\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}=\dfrac{6\sqrt{2}-2\sqrt{6}+3\sqrt{6}-\sqrt{18}+6\sqrt{2}+2\sqrt{6}-3\sqrt{6}-\sqrt{18}}{9-3}=\dfrac{12\sqrt{2}-6\sqrt{2}}{6}=\dfrac{6\sqrt{2}}{6}=\sqrt{2}\)

28 tháng 6 2019

a)(\(\sqrt{2006}-\sqrt{2005}\)).(\(\sqrt{2006}+\sqrt{2005}\))

=\(\sqrt{2006}^2-\sqrt{2005}^2\)

=2006-2005

=1

6 tháng 7 2017

Tam thoi mk moi giai dc cau 3,4. Bh ban con can ko