Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Làm:
a,
- x - 2/3 = - 6/7
<=> - x = - 6/7 + 2/3 = -18/21 + 14/21
<=> - x = - 4/21
<=> x = 4/21.
Vậy x = 4/21.
b,
x/- 27 = - 3 / x
<=> x^2 = - 27 . (- 3)
<=> x^2 = 81
<=> x thuộc {9;- 9}
Vậy x thuộc {9;- 9}.
c,
x / y = 2 / 5
<=> x / 2 = y / 5 = 2x - y / 2.2 - 5 = 3 / -1 = - 3.
(T/c dãy tỷ số bằng nhau)
=> x / 2 = - 3 <=> x = - 6.
y / 5 = - 3 <=> y = - 15.
Vậy x = - 6 ; y = - 15.
Bài 2: Làm:
1/2 a = 2/3 b = 3/4 c
<=> a/2 = 2b/3 = 3c/4
<=> a/2.6 = 2b/3.6 = 3c/4.6 (mỗi vế nhân với 1/6)
<=> a/12 = 2b/18 = 3c/24
<=> a/12 = b/9 = c/8 (Rút gọn)
Áp dụng tính chất dãy tỷ số bằng nhau ta có:
a/12 = b/9 = c/8 = a - b/ 12 - 9 = 15 / 3 = 5 (Theo đề bài)
=> a/12 = 3 <=>a = 36
b/9 = 3 <=> b = 27
c/8 = 3 <=> c = 24
Vậy a = 36 ; b = 27 ; c = 24.
Học tốt !
Bài 1 :
Vì \(a,b,c\)là độ dài các cạnh của tam giác (gt)
\(\Rightarrow\hept{\begin{cases}c< a+b\\a< b+c\\b< c+a\end{cases}}\) ( theo bất đẳng thức trong tam giác )
Ta có công thức : \(\frac{a}{b}< \frac{a+m}{b+m}\left(\frac{a}{b}< 1;a,b,m>0\right)\)
\(\frac{a}{b+c}< \frac{a+a}{a+b+c}=\frac{2a}{a+b+c}\left(1\right)\)
\(\frac{b}{c+a}< \frac{b+b}{a+b+c}=\frac{2b}{a+b+c}\left(2\right)\)
\(\frac{c}{a+b}< \frac{c+c}{a+b+c}=\frac{2c}{a+b+c}\left(3\right)\)
Cộng theo vế (1) , (2) và (3) ta được :
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2\left(a+b+c\right)}{a+b+c}\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< 2\left(đpcm\right)\)
Bài 2 , để chiều nhé bạn
Bài 3 :
Cách 1 :
\(\left|x-1004\right|-\left|x+1003\right|\)
+ ) Xét \(x< -1003\)suy ra
\(\hept{\begin{cases}x+1003< 0\Rightarrow\left|x+1003\right|=-\left(x+1003\right)=-x-1003\\x-1004< 0\Rightarrow\left|x-1004\right|=-\left(x-1004\right)=-x+1004\end{cases}}\)
Khi đó : \(A=\left(-x+1004\right)-\left(-x-1003\right)=2007\)
+ ) Xét \(-1003\le x< 1004\). Suy ra
\(\hept{\begin{cases}x\ge1003\Rightarrow x+1003\ge0\Rightarrow\left|x+1003\right|=x+1003\\x< 1004\Rightarrow x-1004< 0\Rightarrow\left|x-1004\right|=-\left(x-1004\right)=-x+1004\end{cases}}\)
Khi đó : \(A=\left(-x+1004\right)-\left(x+1003\right)=1-2x\)
+ ) Xét \(x\ge1004\). Suy ra
\(\hept{\begin{cases}x-1004\ge0\Rightarrow\left|x-1004\right|=x-1004\\x+1003\ge0\Rightarrow\left|x+1003\right|=x+1003\end{cases}}\)
Khi đó : \(A=\left(x-1004\right)-\left(x+1003\right)=-2007\)
Ta thấy với \(x< -1003\)thì A đạt giá trị lớn nhất là 2007
Vậy \(A_{max}=2007\)khi \(x< -1003\)
2. \(\frac{\left(3X+5Y\right)}{X-2Y}=\frac{1}{4}=>4\left(3X+5Y\right)=X-2Y\\ 12X+20Y=X-2Y\\ X-12X=2Y-20Y\\ -11X=-18Y\\ =>\frac{X}{Y}=-\frac{18}{-11}=\frac{18}{11}\)
Bài 1. 4/25 = 100/x => x = 25.100/4 = 2500/4 = 625
Bài 3. (a-3)/(a+3) = (b-6)/(b+6)
=> (a-3)(b+6) = (a+3)(b-6)
=> ab + 6a -3b -18 = ab - 6a + 3b -18
=> 12a = 6b
=> a/b = 6/12 = 1/2
Ta có : \(\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{b}{4}=\frac{c}{5}\end{cases}\Rightarrow\hept{\begin{cases}\frac{a}{8}=\frac{b}{12}\\\frac{b}{12}=\frac{c}{15}\end{cases}\Rightarrow}\frac{a}{8}=\frac{b}{12}=\frac{c}{15}=\frac{a+b-c}{8+12-15}=\frac{10}{5}=2}\)(dãy tỉ số bằng nhau)
=> \(\hept{\begin{cases}a=16\\b=24\\c=30\end{cases}}\)
Ta có : \(\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{8}=\frac{b}{12}\) và \(\frac{b}{4}=\frac{c}{5}\Rightarrow\frac{b}{12}=\frac{c}{15}\Rightarrow\frac{a}{8}=\frac{b}{12}=\frac{c}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có : \(\frac{a}{8}=\frac{b}{12}=\frac{c}{15}=\frac{a+b-c}{8+12-15}=\frac{10}{5}=2\)
\(\Rightarrow a=2.8=16\) \(b=12.2=24\) \(c=15.2=30\)
Vậy \(a=16;b=24;c=30\)
bài 1
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=>\frac{a+b+c}{b+c+a}=1=>a=b=c\)
bài 2
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{1}{a+b+c}\)
bài 1:
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
=> \(\frac{a}{b}=1\)
\(\frac{b}{c}=1\)
\(\frac{c}{a}=1\)
=> a=b (1)
b=c (2)
c=a (3)
=> a=b=c
Bài 3:
Ta có:\(|\frac{a}{2}-\frac{b}{3}|+|\frac{b}{4}-\frac{c}{3}|+|a+b+c-58|=0.\)
\(\Leftrightarrow\hept{\begin{cases}\frac{a}{2}-\frac{b}{3}=0\\\frac{b}{4}-\frac{c}{3}=0\\a+b+c-58=0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{b}{4}=\frac{c}{3}\\a+b+c=58\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{a}{8}=\frac{b}{12}=\frac{c}{9}\\a+b+c=58\end{cases}}}\)
\(\Leftrightarrow\frac{a+b+c}{8+12+9}=\frac{58}{29}=2\)
=> a/8=2 Vậy a=16
=> b/12=2 Vậy b=24
=> c/9=2 Vậy c=18