\(\frac{12.7^2.4...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2019

\(A=\frac{12.7^2.4}{2^3.10.21}=\frac{2^3.21.14}{2^3.10.21}=\frac{14}{10}=\frac{7}{5}\)

\(B=\frac{1+2+3+...+9}{11+12+...+39}=\frac{\frac{9\left(9+1\right)}{2}}{\frac{\left(11+39\right).\left(39-11+1\right)}{2}}=\frac{45}{725}=\frac{9}{145}\)

\(C=\frac{17.48-17.15}{66.47-66.13}=\frac{17\left(48-15\right)}{66\left(47-13\right)}=\frac{17.33}{66.34}=\frac{1}{4}\)

10 tháng 3 2019

Trả lời

=1/4

...............học tốt................

10 tháng 3 2019

a)                       Giải

Đặt \(d=\left(16n+5,6n+2\right)\)

\(\Rightarrow\hept{\begin{cases}\left(16n+5\right)⋮d\\\left(6n+2\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left[3\left(16n+5\right)\right]⋮d\\\left[8\left(6n+2\right)\right]⋮d\end{cases}}\)

\(\Rightarrow\left[8\left(6n+2\right)-3\left(16n+5\right)\right]⋮d\)

\(\Rightarrow\left[48n+16-48n-15\right]⋮d\)

\(\Rightarrow1⋮d\Leftrightarrow d=1\)

Vậy phân số \(\frac{16n+5}{6n+2}\) tối giản với mọi n.

10 tháng 3 2019

b)                            Giải

Đặt \(d=\left(14n+3,21n+4\right)\)

\(\Rightarrow\hept{\begin{cases}\left(14n+3\right)⋮d\\\left(21n+4\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left[3\left(14n+3\right)\right]⋮d\\\left[2\left(21n+4\right)\right]⋮d\end{cases}}\)

\(\Rightarrow\left[3\left(14n+3\right)-2\left(21n+4\right)\right]⋮d\)

\(\Rightarrow\left[42n-9-42n-8\right]⋮d\)

\(\Rightarrow1⋮d\Leftrightarrow d=1\)

Vậy phân số \(\frac{14n+3}{21n+4}\) tối giản với mọi n.

19 tháng 7 2020

Bài 2: Mỗi xe ô tô có 4 bánh xe . Hỏi 5 xe ô tô như thế có bao nhiêu bánh xe ?

                                                     Bài giải 

                                          5 xe ô tô như thế có số bánh xe là :

                                            4 x 5= 20 (bánh xe )

                                              Đáp số : 20 bánh xe 

31 tháng 3 2019

\(\frac{15}{41}+\frac{-138}{41}< x< \frac{1}{2}+\frac{1}{3}+\frac{1}{6}\)

\(\Leftrightarrow\frac{-123}{41}< x< \frac{1.3+1.2+1}{6}\)

\(\Leftrightarrow-3< x< 1\)

\(\Rightarrow x\in\left\{-2;-1;0\right\}\)

31 tháng 3 2019

\(\frac{x}{5}=\frac{15}{2}-\frac{51}{10}\)

\(\frac{x}{5}=\frac{15.5-51}{10}\)

\(\frac{x}{5}=\frac{24}{10}\)

\(\frac{x}{5}=\frac{12}{5}\)

\(x=12\)

31 tháng 3 2019

a) \(\frac{53}{101}.\frac{-13}{97}+\frac{53}{101}.\frac{-84}{97}\)

\(=\frac{53}{101}\left(\frac{-13}{97}+\frac{-84}{97}\right)\)

\(=\frac{53}{101}.\frac{-97}{97}\)

\(=\frac{53}{101}.\left(-1\right)\)

\(=\frac{-53}{101}\)

b) \(\left(\frac{1}{57}-\frac{1}{5757}\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\)

\(=\left(\frac{1}{57}-\frac{1}{5757}\right)\left(\frac{3}{6}-\frac{2}{6}-\frac{1}{6}\right)\)

\(=\left(\frac{1}{57}-\frac{1}{5757}\right).0\)

\(=0\)

31 tháng 3 2019

c) \(\frac{3^2}{25}.\frac{75}{-21}.\frac{50}{35}\)

\(=\frac{3^2.75.50}{25.\left(-21\right).35}\)

\(=\frac{3.3.25.3.5.5.2}{25.3.\left(-7\right).5.7}\)

\(=\frac{3.3.5.2}{\left(-7\right).7}\)

\(=\frac{90}{-49}\)

d) \(\frac{25.48-25.18}{20.5^3}\)

\(=\frac{25\left(48-18\right)}{10.2.125}\)

\(=\frac{25.10.3}{10.2.25.5}\)

\(=\frac{3}{10}\)

1. Liệt kê các phần tử của tập hợp P các số nguyên \(x\)sao cho \(0\le\frac{x}{5}< 2\)2. Tìm \(x\)nguyên để phân số sau là số nguyên \(\frac{13}{x-15}\)3. Cho B= \(\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+...+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\). Hãy so sánh \(B\)với \(\frac{1}{4}\)4. Tìm số nguyên \(x\)sao...
Đọc tiếp

1. Liệt kê các phần tử của tập hợp P các số nguyên \(x\)sao cho \(0\le\frac{x}{5}< 2\)

2. Tìm \(x\)nguyên để phân số sau là số nguyên \(\frac{13}{x-15}\)

3. Cho B= \(\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+...+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\). Hãy so sánh \(B\)với \(\frac{1}{4}\)

4. Tìm số nguyên \(x\)sao cho: \(\frac{x-2}{27}+\frac{x-3}{26}+\frac{x-4}{25}+\frac{x-5}{24}+\frac{x-44}{5}=1\)

5. Tìm các số nguyên dương \(x,y\)thỏa mãn:\(\frac{x}{2}+\frac{x}{y}-\frac{3}{2}=\frac{10}{y}\)

6. Tìm các giá trị nguyên của \(n\) để \(n+8\)chia hết cho \(n+7\)

7. Tìm phân số lớn nhất sao cho khi chia các phân số \(\frac{28}{15};\frac{21}{10};\frac{49}{84}\)cho nó ta đều được thương là các số tự nhiên 

8. Cho phân số A= \(\frac{-3}{n-3}\left(n\inℤ\right)\)

a) Tìm số nguyên \(n\)để \(A\)là phân số 

b) Tìm số nguyên \(n\)để \(A\)là số nguyên 

9.Tìm các số nguyên \(x\)sao cho phân số \(\frac{4}{1-3x}\)có giá trị là số nguyên

10. Tìm tập hợp các số nguyên \(a\)là bội của 3:

\((\frac{-25}{12}.\frac{7}{29}+\frac{-25}{12}.\frac{22}{29}).\frac{12}{5}< a\le2\frac{1}{3}+3\frac{2}{3}\)

 

0
21 tháng 2 2016

\(a,\frac{27}{27}\)=1

\(b,\frac{68}{-17}=-4\)

\(c,\frac{366100}{366100}=1\)

\(d,\frac{69}{5923}\)

5 tháng 3 2017

a) \(\frac{2^{10}.9^6}{4^6.3^{11}}=\frac{2^{2.5}.3^{2.6}}{4^6.3^{11}}=\frac{\left(2^2\right)^5.3^{12}}{4^6.3^{11}}=\frac{4^5.3^{12}}{4^6.3^{11}}=\frac{3}{4}\)

5 tháng 11 2015

Cả tử số và mẫu số đều là số có hai chữ số

+) Trên tử: chữ số hàng chục nhỏ hơn chữ số hàng đơn vị

+) Dưới mẫu: chữ số hàng chục lớn hơn chữ số hàng đơn vị