\(a\), dựng hình vuông thứ hai có cạnh là đườn...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2022

Ta có:

Áp dụng định lý Pi-ta-go, ta có công thức để tìm đường chéo hình vuông\(=a\sqrt{2}\)

\(\Rightarrow\)Cứ sau một lần như thế thì cạnh hình vuông sẽ tăng lên \(\sqrt{2}\)hay diện tích hình vuông sau 1 lần như thế thì sẽ gấp\(\sqrt{2}^2=4lần\)

\(\Rightarrow\)Cứ một lần hình vuông bằng cạnh hình vuông trước thì diện tích sẽ gấp 4 lần:

\(\Rightarrow\)Nếu diện tích hình vuông thứ 2022 hay lặp lại cái trên 2022 lần thì diện tích sẽ gấp \(2022\cdot4=8088lần\)hình vuông ban đầu.

26 tháng 1 2022

Gọi diện tích các hình vuông là S1 ; S2 ; ... S2022 với độ dài cạnh tương ứng là a ; a2 ; a3 ; ... ; a2022

Dựng hình vuông thứ n có cạnh an với độ dài cạnh là đường chéo hình vuông có cạnh an - 1 (n \(\inℕ^∗\) )

=> Sn = (an)2 (1)

Sn - 1 = (an-1)2 (2) 

Khi đó (an)2= 2(an - 1)2 

=> \(a_n=\sqrt{2}a_{n-1}\)(3) 

Từ (3)(2)(1) => \(S_n=2.S_{n-1}\)

Khi đó với 1 < n < 2023

=> \(S_{2022}=2S_{2021}=2^2S_{2020}=...=2^{2021}S_1\)= 22021a2

10 tháng 9 2017

HÌNH CHỈ MANG TÍNH MINH HỌA

TA CÓ DIỆN TÍCH CỦA 4 NỬA ĐƯỜNG TRÒN CÓ ĐƯỜNG KÍNH LÀ CẠNH HÌNH VUÔNG LÀ

\(\left(\frac{\sqrt[]{6}-\sqrt{2}}{2\sqrt{2}+12\sqrt{5}}\right)^2.\pi\)

TA DỄ DÀNG NHẬN THẤY TỔNG DIỆN TÍCH CỦA 4 NỬA ĐƯỜNG TRÒN BẰNG TỔNG DIỆN TÍCH HÌNH VUÔNG CONNGJ VỚI DIỆN TÍCH HÌNH HOA THỊ

=> DIỆN TÍCH HOA THỊ = \(\left(\frac{\sqrt{6}-\sqrt{2}}{\sqrt{2}+6\sqrt{5}}\right)^2.\pi-\left(\frac{\sqrt{6}-\sqrt{2}}{\sqrt{2}+6\sqrt{5}}\right)^2=\left(\frac{\sqrt{6}-\sqrt{2}}{\sqrt{2}+6\sqrt{2}}\right)^2\left(\pi-1\right)\)

                                  = \(\left(\frac{8-2\sqrt{12}}{182+12\sqrt{10}}\right)\left(\pi-1\right)\)

20 tháng 12 2021

 hình ảnh đó. Cam ơn các bạn

20 tháng 12 2021

?

18 tháng 12 2021

Chu vi của hình vuông là:

\(\sqrt{14\cdot5.3}\cdot4=34,46\left(cm\right)\)