Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Giải:
c) Ta có: tam giác ABD = tam giác ACE (chứng minh trên)
=> AD = AE (2 cạnh tương ứng)
=> Tam giác ADE cân tại A (dấu hiệu nhận biết)
=> Góc AED = góc AED = (180o - góc DAE) : 2
hay góc AED = (180o - góc BAC) : 2 (1)
Lại có: tam giác ABC cân tại A (gt)
=> AB = AC (định lí)
Góc ABC = góc ACB = (180o - góc BAC) : 2 (2)
Từ (1), (2) => Góc AED = góc ABC
Mà 2 góc này ở vị trí đồng vị
=> DE // BC (dấu hiệu nhận biết) (đpcm)
d) Vì tam giác BCH cân tại H (chứng minh trên)
=> BH = CH (định lí)
Xét tam giác ABH và tam giác ACH có:
AH là cạnh chung
AB = AC (chứng minh trên)
BH = CH (chứng minh trên)
=> Tam giác ABH = tam giác ACH (c.c.c)
=> Góc BAH = góc CAH (2 góc tương ứng)
hay góc BAK = góc CAK
Ta có: góc ABC = góc ACB (chứng minh trên) => Góc ABK = góc ACK
Xét tam giác ABK và tam giác ACK có:
Góc BAK = góc CAK (chứng minh trên)
AB = AC (chứng minh trên)
Góc ABK = góc ACK (chứng minh trên)
=> Tam giác ABK = tam giác ACK (g.c.g)
=> BK = CK (2 cạnh tương ứng)
Xét tam giác BHK và tam giác CKM có:
BK = CK (chứng minh trên)
Góc BKH = góc CKM (2 góc đối đỉnh)
HK = KM (vì K là trung điểm của HK)
=> Tam giác BHK = tam giác CMK (c.g.c)
=> Góc HBK = góc KCM (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong => BH // CM (dấu hiệu nhận biết)
=> BD // CM
=> Góc BDC + góc DCM = 180o
=> Góc DCM = 180o - góc BDC = 180o - 90o = 90o
=> MC _|_ AC
=> Tam giác ACM vuông tại C (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
à quên , nối M với N nhé.
giải
vì MA = BM nên \(\Delta ABM\)cân tại M \(\Rightarrow\)\(\widehat{BAM}=\widehat{MBA}\)
vì Bx // AM nên \(\widehat{MAB}+\widehat{ABN}=180^o\)hay \(\widehat{MBA}+\widehat{ABN}=180^o\)( 1 )
vì \(\Delta ABC\)cân tại A nên \(\widehat{ABM}=\widehat{ACB}\)
Ta có : \(\widehat{ACB}+\widehat{ACM}=180^o\)hay \(\widehat{ABM}+\widehat{ACM}=180^o\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(\widehat{ABN}=\widehat{ACM}\)
Xét \(\Delta ABN\)và \(\Delta ACM\)có :
AB = AC ( gt )
\(\widehat{ABN}=\widehat{ACM}\)( cmt )
BN = CM ( gt )
Suy ra : \(\Delta ABN\)= \(\Delta ACM\)( c.g.c )
\(\Rightarrow\)AN = AM
\(\Rightarrow\)\(\Delta AMN\)cân tại A
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình ảnh chỉ mang tính chất minh họa thui nhé bn!!
a) Xét \(\Delta ABM\)và \(\Delta ACM\)có:
\(AB=AC\)( do tam giác ABC cân tại A)
\(\widehat{ABM}=\widehat{ACM}\)( do tam giác ABC cân tại A)
\(BM=MC\)( m là trung điểm của BC)
\(\Rightarrow\Delta ABM=\Delta ACM\left(c-g-c\right)\)
b) Ta có: \(\widehat{AMB}+\widehat{AMC}=180^o\)( 2 góc kề bù)
Mà \(\widehat{AMB}=\widehat{AMC}\)( 2 góc tương ứng của tam giác ABM và tam giác ACM)
\(\Rightarrow2\widehat{AMB}=180^o\)
\(\Rightarrow\widehat{AMB}=90^o\)
hay nói cách khác \(AM\perp BC\)
c) Ta có: \(\widehat{BAM}=\widehat{MAC}\)( 2 góc tương ứng của tam giác ABM và tam giác ACM)
và AM nằm giữa góc BAC
\(\Rightarrow AM\)là tia phân giác của \(\widehat{BAC}\)
d) Xét \(\Delta AMB\)và \(\Delta DMC\)có:
\(AM=MD\)(gt)
\(\widehat{AMB}=\widehat{DMC}\)( 2 góc đối đỉnh)
\(BM=MC\)( M là trung điểm BC)
\(\Rightarrow\Delta AMB=\Delta DMC\left(c-g-c\right)\)
\(\Rightarrow AB=CD\)( 2 cạnh tương ứng) (1)
mà \(AB=AC\)( tam giác ABC cân tại A) (2)
Từ (1) và (2) \(\Rightarrow AC=CD\)
\(\Rightarrow\Delta ACD\)cân tại C
e) Xét \(\Delta ABC\)và \(\Delta CEA\)có:
\(AB=AC\)( tam giác ABC cân tại A)
\(\widehat{ACB}=\widehat{CAE}\)( 2 góc so le trong)
\(BC=AE\left(gt\right)\)
\(\Rightarrow\Delta ABC=\Delta CEA\left(c-g-c\right)\)
f) Gọi tia đối AE là AI
Ta có: \(\widehat{IAB}+\widehat{BAC}+\widehat{CAE}=180^O\)( I ; A; E thẳng hàng)
hay \(\widehat{MCD}+\widehat{ACE}+\widehat{ACB}=180^o\)
\(\Rightarrow D;C;E\)thẳng hàng
hok tốt!!
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C H N M
Bài làm
a) Vì tam giác ABC vuông cân ở A
Mà AH là phân giác
=> AH là trung tuyến.
=> AH = BH = HC
=> Tam giác AHC cân tại H
=> AH = HC
=> \(\widehat{HAC}=\widehat{HCA}\)
Mà \(\widehat{HAB}=\widehat{HAC}\)( Do AH phân giác )
=> \(\widehat{HCA}=\widehat{HAB}\)
Ta có: AN + NB = AB
AM + MC = AC
mà AB = AC, BN = AM
=> AN = MC
Xét tam giác AHN và tam giác CHM có:
AN = MC ( cmt )
\(\widehat{HCA}=\widehat{HAB}\)( cmt )
AH = HC ( cmt )
=> Tam giác AHN = tam giác CHM ( c.g.c)
b) Vì tam giác AHN = tam giác CHM ( cmt )
=> NH = HM
Vì AH trung tuyến
=> BH = HC
Xét tam giác AHM và tam giác NHB có:
NH = HM ( cmt )
BN = AM ( gt )
HB = HC ( cmt )
=> Tam giác AHM = tam giác NHB ( c.c.c )
![](https://rs.olm.vn/images/avt/0.png?1311)
Nguyễn Huy TúAce Legonasoyeon_Tiểubàng giảiTrần Việt LinhHoàng Lê Bảo NgọcVõ Đông Anh TuấnPhương An
(ko vẽ hình và làm câu a,b,c cũng đc,chủ yếu là câu d mọi người giúp mk vs nhé)
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C M N D
a, xét tam giác ABN và tam giác ACM có :
góc A chung
AB = AC (gt)
AN = AM (gt)
=> tam giác ABN = tam giacd ACM (c-g-c)
=> BN = CM (đn)
b, có AB = AC (gt)
AB = BM + MA
AC = CN + NA
AM = AN (gt)
=> BM = CN
AB = AC (gt) => tam giác ABC cân tại A (đn) => góc ABC = góc ACB (tc)
xét tam giác BCM và tam giác CBN có : BC chung
=> tam giác BCM = tam giác CBN (c-g-c)
c, tam giác BCM = tam giác CBN (Câu b)
=> góc DBC = góc DCB (đn) mà góc DBC = 30
xét tam giác DBC có : góc DBC + góc DCB + góc BDC = 180 (đl)
góc BDC = 180 - 30.2 = 120
mà góc BDC = góc MDN (đối đỉnh)
=> góc MDN = 120
![](https://rs.olm.vn/images/avt/0.png?1311)
B A E C 30 o
Bài làm
a) Vì BA là đường cao của tam giác BCE (BA | EC)
Mà BE là đường trung tuyến của tam giác BCE (AE = AC)
=> Tam giác BCE cân tại B (1)
Mà ta có: \(\widehat{ABC}+\widehat{C}=90^0\)
hay \(30^0+\widehat{C}=90^0\Rightarrow\widehat{C}=60^0\) (2)
Từ (1) và (2) => Tam giác BCE đều
b) Ta có: A là trung điểm của EC (AE = EC)
=> \(AC=\frac{1}{2}EC\)
Mà EC = BC (Tam giác BCE đều)
=> \(AC=\frac{1}{2}BC\)(đpcm)
a: Xét ΔAMN có AM=AN
nên ΔAMN cân tại A
b: Xét ΔABN và ΔACM có
AB=AC
\(\widehat{A}\) chung
AN=AM
Do đó: ΔABN=ΔACM
SUy ra: BN=CM
c: Xét ΔABC có AM/AB=AN/AC
nên MN//BC