\(\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2021

\(\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\left(x\ge0,x\ne1\right)\)

\(=\left(\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right).\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{x+2+\sqrt{x}\left(\sqrt{x}-1\right)-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{2}{x+\sqrt{x}+1}\)

b) Ta có: \(x\ge0\Rightarrow x+\sqrt{x}+1\ge1\Rightarrow\dfrac{2}{x+\sqrt{x}+1}\le2\)

\(\Rightarrow max=2\) khi \(x=0\)

Ta có: \(\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)

\(=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\cdot\dfrac{2}{x+\sqrt{x}+1}\)

\(=\dfrac{2}{x+\sqrt{x}+1}\)

Bài 2:

a: \(A=\left(5+\sqrt{5}\right)\left(\sqrt{5}-2\right)+\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{4}-\dfrac{3\sqrt{5}\left(3-\sqrt{5}\right)}{4}\)

\(=-5+3\sqrt{5}+\dfrac{5+\sqrt{5}-9\sqrt{5}+15}{4}\)

\(=-5+3\sqrt{5}+5-2\sqrt{5}=\sqrt{5}\)

b: \(B=\left(\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+3\sqrt{x}+6-2\sqrt{x}-6}=1\)

a: \(=\dfrac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}\cdot\left(\dfrac{1-x}{2\sqrt{x}}\right)^2\)

\(=\dfrac{-4\sqrt{x}}{x-1}\cdot\dfrac{\left(x-1\right)^2}{4x}=\dfrac{-\left(x-1\right)}{\sqrt{x}}\)

b: \(\dfrac{P}{\sqrt{x}}>2\)

=>\(-\dfrac{\left(x-1\right)}{\sqrt{x}}\cdot\dfrac{1}{\sqrt{x}}>2\)

=>\(\dfrac{-x+1}{x}-2>0\)

=>\(\dfrac{-x+1-2x}{x}>0\)

\(\Leftrightarrow\dfrac{3x-1}{x}< 0\)

=>0<x<1/3

 

16 tháng 8 2018

Mình làm mấy bài rút gọn thôi nhé :v (mấy cái kia mình làm sợ không đúng)

\(P=\dfrac{\sqrt{x}+1}{x-1}-\dfrac{x+2}{x\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\\ =\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\\ =\dfrac{1}{\sqrt{x}-1}-\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)

\(=\dfrac{x+\sqrt{x}+1-\left(x+2\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{x+\sqrt{x}+1-x-2-\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}+1-2-x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}+0-x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}\left(1-\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}\left[-\left(\sqrt{x}-1\right)\right]}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}\left(-1\right)}{x+\sqrt{x}+1}\\ =-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)

16 tháng 8 2018

Bài 3:

\(P=\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\\ =\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{\left(2x+\sqrt{x}\right)\sqrt{x}}{x}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\\ =\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}+2\left(\sqrt{x}+1\right)\\ =\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x\left(2\sqrt{x}+1\right)}{x}+2\sqrt{x}+2\)

\(=\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+2\sqrt{x}+2\\ =\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-2\sqrt{x}-1+2\sqrt{x}+2\\ =\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}+1\\ =\dfrac{x-\sqrt{x}+x+\sqrt{x}+1}{x+\sqrt{x}+1}\\ =\dfrac{2x+1}{x+\sqrt{x}+1}\)

24 tháng 7 2018

\(a.R=\left(\dfrac{\sqrt{x}+1}{\sqrt{xy}+1}+\dfrac{\sqrt{x}\left(\sqrt{y}+1\right)}{1-\sqrt{xy}}+1\right):\left(1-\dfrac{\sqrt{x}+1}{\sqrt{xy}+1}-\dfrac{\sqrt{x}\left(\sqrt{y}+1\right)}{\sqrt{xy}-1}\right)\)

\(R=\left[\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)-\sqrt{x}\left(\sqrt{y}+1\right)\left(\sqrt{xy}+1\right)+xy-1}{\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)}\right]:\left[\dfrac{xy-1-\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)-\sqrt{x}\left(\sqrt{y}+1\right)\left(\sqrt{xy}+1\right)}{\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)}\right]\)

\(R=\dfrac{x\sqrt{y}-\sqrt{x}+\sqrt{xy}-1-xy-\sqrt{xy}-x\sqrt{y}-\sqrt{x}+xy-1}{xy-1}:\dfrac{xy-1-x\sqrt{y}+\sqrt{x}+\sqrt{xy}+1-xy-\sqrt{xy}-x\sqrt{y}-\sqrt{x}}{xy-1}\)

\(R=\dfrac{-2\sqrt{x}-2}{xy-1}:\dfrac{-2x\sqrt{y}-2\sqrt{xy}}{xy-1}\)

\(R=\dfrac{-2\left(\sqrt{x}+1\right)}{xy-1}.\dfrac{xy-1}{-2\left(x\sqrt{y}+\sqrt{xy}\right)}\)

\(R=\dfrac{\sqrt{x}+1}{x\sqrt{y}+\sqrt{xy}}\)

\(b.C=\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{7\sqrt{x}+4}{x-\sqrt{x}-6}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)

\(C=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}+\dfrac{7\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)

\(C=\dfrac{2x-6\sqrt{x}+7\sqrt{x}+4-x-4\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)

\(C=\dfrac{x-3\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)

\(C=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)

\(c.M=\left(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+x}=\dfrac{\sqrt{x}+1+x}{x+\sqrt{x}}.\dfrac{\sqrt{x}+x}{\sqrt{x}}=\dfrac{\sqrt{x}+1+x}{\sqrt{x}}\)

10 tháng 9 2017

1. \(\left(1+\sqrt{2}+\sqrt{3}\right)\left(1+\sqrt{2}-\sqrt{3}\right)\)

\(=\left(1+\sqrt{2}\right)^2-\sqrt{3}^2\)

\(=1+2\sqrt{2}+2-3\)

\(=2\sqrt{2}\)

10 tháng 9 2017

3. \(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\cdot\left(1+\dfrac{1}{\sqrt{x}}\right)\)(1)

ĐKXĐ \(x>0,x\ne1\)

pt (1) <=> \(\left(\dfrac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}\right)\cdot\left(\dfrac{\sqrt{x}+1}{\sqrt{x}}\right)\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x}+1\right)\cdot\left(\sqrt{x}+1+\sqrt{x}-1\right)}{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow\dfrac{2\sqrt{x}}{x-\sqrt{x}}\)

\(\Leftrightarrow\dfrac{\sqrt{x}\cdot2}{\sqrt{x}\cdot\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}\)

b) Để \(\sqrt{A}>A\Leftrightarrow\sqrt{\dfrac{2}{\sqrt{x}-1}}>\dfrac{2}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}>\dfrac{4}{x-2\sqrt{x}+1}\)

\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}-\dfrac{4}{x-2\sqrt{x}+1}>0\)

\(\Leftrightarrow\dfrac{2\cdot\left(\sqrt{x}-1\right)-4}{x-2\sqrt{x}+1}>0\)

\(\Leftrightarrow\dfrac{2\sqrt{2}-2-4}{x-2\sqrt{x}+1}>0\)

\(\Leftrightarrow\dfrac{2\sqrt{2}-6}{x-2\sqrt{x}+1}>0\)

\(2\sqrt{2}-6< 0\Rightarrow x-2\sqrt{x}+1< 0\)

\(x-2\sqrt{x}+1=\left(\sqrt{x}-1\right)^2\ge0\forall x\)

Vậy không có giá trị nào của x thỏa mãn \(\sqrt{A}>A\)

(P/s Đề câu b bị sai hay sao vậy, chả có số nào mà \(\sqrt{A}>A\) cả, check lại đề giùm với nhé)

AH
Akai Haruma
Giáo viên
9 tháng 8 2018

Lời giải:

ĐK: \(x\geq 0; x\neq 4;x\neq 9\)

a) Ta có:

\(P=\left(\frac{\sqrt{x}+2}{(\sqrt{x}-2)(\sqrt{x}-3)}+\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-3}\right):\left(2-\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)

\(P=\left(\frac{\sqrt{x}+2}{(\sqrt{x}-2)(\sqrt{x}-3)}+\frac{(\sqrt{x}+3)(\sqrt{x}-3)}{(\sqrt{x}-2)(\sqrt{x}-3)}-\frac{(\sqrt{x}+2)(\sqrt{x}-2)}{(\sqrt{x}-3)(\sqrt{x}-2)}\right):\frac{2\sqrt{x}+2-\sqrt{x}}{\sqrt{x}+1}\)

\(P=\frac{\sqrt{x}+2+(x-9)-(x-4)}{(\sqrt{x}-2)(\sqrt{x}-3)}:\frac{\sqrt{x}+2}{\sqrt{x}+1}\)

\(P=\frac{\sqrt{x}-3}{(\sqrt{x}-2)(\sqrt{x}-3)}.\frac{\sqrt{x}+1}{\sqrt{x}+2}\)

\(=\frac{\sqrt{x}+1}{(\sqrt{x}-2)(\sqrt{x}+2)}=\frac{\sqrt{x}+1}{x-4}\)

b)

Ta có: \(\frac{1}{P}\leq \frac{-5}{2}\)\(\Leftrightarrow \frac{x-4}{\sqrt{x}+1}\leq \frac{-5}{2}\)

\(\Leftrightarrow 2(x-4)\leq -5(\sqrt{x}+1)\)

\(\Leftrightarrow 2x+5\sqrt{x}-3\leq 0\)

\(\Leftrightarrow (2\sqrt{x}-1)(\sqrt{x}+3)\leq 0\)

\(\Rightarrow 2\sqrt{x}-1\leq 0\) (do \(\sqrt{x}+3>0\) )

\(\rightarrow x\leq \frac{1}{4}\)

Vậy \(0\leq x\leq \frac{1}{4}\)

12 tháng 10 2022

a: \(=\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{x-1}=\dfrac{-2\left(\sqrt{x}-1\right)}{x-1}=\dfrac{-2}{\sqrt{x}+1}\)

b: \(=\dfrac{\sqrt{x}-x\sqrt{y}-\sqrt{y}+y\sqrt{x}+\sqrt{x}+x\sqrt{y}+\sqrt{y}+y\sqrt{x}}{1-xy}:\left(\dfrac{x+y+2xy+1-xy}{1-xy}\right)\)

\(=\dfrac{2\sqrt{x}+2y\sqrt{x}}{1-xy}\cdot\dfrac{1-xy}{x+y+xy+1}\)

\(=\dfrac{2\sqrt{x}\left(y+1\right)}{\left(y+1\right)\left(x+1\right)}=\dfrac{2\sqrt{x}}{x+1}\)

c: \(=\dfrac{3x+3\sqrt{x}-9+x+2\sqrt{x}-3-x+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{3x+5\sqrt{x}-8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}\)

19 tháng 8 2018

ĐKXĐ : \(x\ge0\) ; \(x\ne4\)\(x\ne9\)

\(A=\left(\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{2-\sqrt{x}}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\right):\left(2-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)

\(=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right):\left(\dfrac{2\left(\sqrt{x}+1\right)}{\sqrt{x}+1}-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)

\(=\dfrac{\sqrt{x}+2+x-9-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}+2-\sqrt{x}}{\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)

\(=\dfrac{1}{\sqrt{x}-2}.\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)

\(=\dfrac{\sqrt{x}+1}{x-4}\)

Câu b : \(\dfrac{1}{A}< \dfrac{1}{5}\Leftrightarrow\dfrac{x-4}{\sqrt{x}+1}< \dfrac{1}{5}\Leftrightarrow5x-20< \sqrt{x}+1\Leftrightarrow5x-\sqrt{x}-21< 0\)Mysterious Person Tới đây làm sao nữa :(((

19 tháng 8 2018

\(\text{a) }ĐKXĐ:x\ge0;x\ne4;x\ne9\\ A=\left(\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{2-\sqrt{x}}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\right):\left(2-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\\ =\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right):\left(\dfrac{2\left(\sqrt{x}+1\right)}{\sqrt{x}+1}-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\\ =\dfrac{\sqrt{x}+2+x-9-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}+2-\sqrt{x}}{\sqrt{x}+1}\\ =\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\\ =\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\\ =\dfrac{\sqrt{x}+1}{x-4}\)

\(b\text{) }\dfrac{1}{A}\le\dfrac{1}{5}\\ \Leftrightarrow A\ge5\\ \Leftrightarrow\dfrac{\sqrt{x}+1}{x-4}\ge5\\ \Leftrightarrow\dfrac{\sqrt{x}+1}{x-4}-5\ge0\\ \Leftrightarrow\dfrac{\sqrt{x}+1-5\left(x-4\right)}{x-4}\ge0\\ \Leftrightarrow\dfrac{\sqrt{x}+1-5x+20}{x-4}\ge0\\ \Leftrightarrow\dfrac{\sqrt{x}-5x+21}{x-4}\ge0\\ \Leftrightarrow\dfrac{\left(\sqrt{x}-\dfrac{1+\sqrt{421}}{10}\right)\left(\sqrt{x}-\dfrac{1-\sqrt{421}}{10}\right)}{\sqrt{x}-2}\ge0\)

Rồi lập bảng xét dấu.