K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2022

`Answer:`

`a)`

`A=5(x+1)^2-3(x-3)^2-4(x^2-4)`

`=>A=5(x^2+2x+1)-3(x^2-6x+9)-4x^2+16`

`=>A=5x^2+10x+5-3x^2+18x-27-4x^2+16`

`=>A=(5x^2-3x^2-4x^2)+(10x+18x)+(5-27+16)`

`=>A=-2x^2+28x-6`

`b)`

`B=5(x+1)^2-3(x-3)^2-4(x+2)(x-2)`

`=2x(3x+5)-3(3x+5)-2x(x^2-4x+4)-[(2x)^2-3^2]`

`=6x^2+10x-9x-15-2x^3+8x^2-8x-4x^2+9`

`=(6x^2-4x^2+8x^2)-2x^3+(10x-9x-8x)+(-15+9)`

Thay `x=-7` vào ta được:

`B=10(-7)^2-2(-7)^3-7(-7)-6`

`=>B=10.49-2(-343)+49-6`

`=>B=490+686+49-6`

`=>B=1219`

5 tháng 9 2017

(6x+1)(2x-5)=12x2-30x+2x-5=12x2-28x-5

(2x+5)2-2x(2x+8)=4x2+20x+25-4x2-16x=4x+25

(3x-5)(2x-1)-(2x+3)(3x+7)+30x=6x2-3x-10x+5=6x2-13x+5

(X-1)2-(x+1)(x-1)=x2-2x+1-x2+1=-2x+2

(3x+2)(9x2-6x+4)-(3+x)(x-3)=27x3+8+9-x2=27x3-x2+17

4 tháng 9 2020

a) đk: \(x\ne\left\{0;2\right\}\)

Ta có:

\(M=\frac{x}{x-2}\div\frac{2x}{x^2-2x}\)

\(M=\frac{x}{x-2}\cdot\frac{x\left(x-2\right)}{2x}\)

\(M=\frac{x}{2}\)

b) \(x^2-3x=0\Leftrightarrow x\left(x-3\right)=0\Rightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=3\end{cases}}\)

Tại x = 3 thì giá trị của M là: \(M=\frac{3}{2}\)

c) Để \(M\ge0\Leftrightarrow\frac{x}{2}\ge0\Rightarrow x\ge0\)

Vậy khi \(x\ge0\Leftrightarrow M\ge0\)

27 tháng 2 2021

Tính giá trị biểu thức 2x^2-3x+1. Tại x thõa mãn x^2=1/4

24 tháng 3 2020

1) (2x^2 + 1)(x^2 - 2x - 1)

= 2x^4 - 4x^3 - 2x^2 + x^2 - 2x - 1

= 2x^4 - 4x^3 - x^2 - 2x - 1

2) (x^2 - x^4)/(x^2 - 1 + 1)

= (x^2.(1 - x^2))/(x^2 - 1 + 1)

= (x^2.(1 + x)(1 - x))/x^2

= (1 + x)(1 - x)

3) (3x + y)^3 + x^3 - 3x^2 + 3x + 1

Thay x = 1,1; y = -0,7 vào biểu thức, ta có:

= [3.1,1 + (-0,7)]^3 + 1,1^3 - 3.1,1^2 + 3.1,1 + 1

= 19,577

25 tháng 7 2018

a ) 

\(A=xy\left(3x^2-6xy\right)-3\left(x^3y-2x^2y^2-1\right)\)

\(\Leftrightarrow A=3x^3y-6x^2y^2-3x^3y+6x^2y^2+3\)

\(\Leftrightarrow A=3\)

\(\Leftrightarrow A\)ko phụ thuộc vào g/t của biến 

b ) 

\(B=\left(x-9\right)\left(x-9\right)+\left(2x+1\right)^2-\left(5x-4\right)\left(x-2\right)\)

\(\Leftrightarrow B=x^2-2.x.9+9^2+\left(2x\right)^2+2.2x.1+1-\left[5x^2-4x-10x+8\right]\)

\(\Leftrightarrow B=x^2-18x+81+4x^2+4x+1-5x^2+4x+10x-8\)

\(\Leftrightarrow B=\left(x^2+4x^2-5x^2\right)+\left(-18x+4x+4x+10x\right)+\left(81-8+1\right)\)

\(\Leftrightarrow B=74\)

\(\Leftrightarrow B\)ko phụ thuộc vào g/t của biến 

31 tháng 7 2017

\(A=x^2-2x.\frac{3}{2}+\frac{9}{4}+\frac{11}{4}\)

\(A=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)

MIN A=\(\frac{11}{4}\Leftrightarrow x=\frac{3}{2}\)

7 tháng 11 2017

 

Ta có : A = x2 - 6x + 15 

= x2 - 6x + 9 + 6

= (x - 3)2 + 6 6xR

Vậy Amin = 6 khi x = 3.

 
 
1 tháng 11 2020

a) \(A=3x\left(x^2-2x+3\right)-x^2.\left(3x-2\right)+5\left(x^2-x\right)\)

\(=3x^3-6x^2+9x-3x^3+2x^2+5x^2-5x\)

\(=x^2+4x\)

Thay \(x=5\)vào biểu thức ta có: \(A=5^2+4.5=25+20=45\)

b) \(B=x\left(x^2+xy+y^2\right)-y\left(x^2+xy+y^2\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)=x^3-y^3\)

Thay \(x=10\)\(y=-1\)vào biểu thức ta có: 

\(B=10^3-\left(-1\right)^3=1000+1=1001\)

8 tháng 7 2018

\(4x^2+8x+5=\)  \(\left(2x\right)^2+2.x.2.2+4+1\)

                             \(=\left(2x+2\right)^2+1\)

với \(x=49\)=> \(\left(49+2\right)^2+1=2602\)

\(x^3+3x^2+3x+1\) \(=\left(x+1\right)^3\)

với \(x=99\)=> \(\left(99+1\right)^3=1000000\)

mấy cau kia làm tương tự nha

8 tháng 7 2018

Mk chỉ phân tích ra thôi,cn đâu bn tự thay số vào nha! 

\(a,A=4x^2+8x+5\)

\(=4x^2+8x+4+1\)

\(=\left(2x+2\right)^2+1\)

\(b,B=x^3+3x^2+3x+1\)

\(=\left(x+1\right)^3\)

\(c,C=x^3-9x^2+27x-26\)

\(=\left(x^3-9x^2+27x-27\right)+1\)

\(=\left(x-3\right)^3+1\)

\(d,D=\left(2x-3\right)^2-\left(4x-6\right)\left(2x-5\right)+\left(2x-5\right)^2\)

\(=\left(2x-3\right)^2-2\left(2x-3\right)\left(2x-5\right)+\left(2x-5\right)^2\)

\(=\left(2x-3-2x+5\right)^2\)

\(=4\)

Vì giá trị của bt ko phụ thuộc vào biến nên bt luôn có giá trị là 4