K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2:

a: \(P\left(x\right)=2x^3+3x^4-x^3-3x^4+5x-2024-x^3-3x\)

\(=\left(2x^3-x^3-x^3\right)+\left(3x^4-3x^4\right)+\left(5x-3x\right)-2024\)

=2x-2024

b: \(P\left(0\right)=2\cdot0-2024=-2024\)

\(P\left(2024\right)=2\cdot2024-2024=2024\)

\(P\left(-2023\right)=2\cdot\left(-2023\right)-2024=-4046-2024=-6070\)

Bài 1:

a: \(A\left(x\right)=x^3+3x^2-5x-2x^2+5x^3+x^4-2x+1\)

\(=x^4+\left(x^3+5x^3\right)+\left(3x^2-2x^2\right)+\left(-5x-2x\right)+1\)

\(=x^4+6x^3+x^2-7x+1\)

Bậc là 4

Hệ số cao nhất là 1

Hệ số tự do là 1

b: \(B\left(x\right)=-x^6+2x^3+6-2x^4+x^6-x-5+2x^4+x^3\)

\(=\left(-x^6+x^6\right)+\left(-2x^4+2x^4\right)+\left(2x^3+x^3\right)+\left(-x\right)+\left(6-5\right)\)

\(=3x^3-x+1\)

Bậc là 3

Hệ số cao nhất là 3

Hệ số tự do là 1

14 tháng 11 2021

bạn ghi ra chớ chụp rối lém

14 tháng 11 2021

mik chụp từng câu 1 đc ko bạn

9 tháng 6 2017

ta có P(x)=x^2+ax+b ; Q(x)=x^2+cx+d

ta có x1 và x2 là nghiêm của P(x)Dán
nên \(x_1^2+ax_1+b=0;x_2^2+ax_2+b=0\)

\(\Rightarrow x_1^2=-ax_1-b\)\(x_2^2=-ax_2-b\) (1)
Ta có x1,x2 là nghiêm của Q(x)

nên \(x_1^2+cx_1+d=0;x_2^2+cx_2+d=0\)

\(\Rightarrow x_1^2=-cx_1-d\)\(x_2^2=-cx_2-d\) (2)

Từ (1) và (2) suy ra \(-ax_1-b=-cx_1-d\\ -ax_2-b=-cx_2-d\)

Do đó \(ax_1+b=cx_1+d\\ ax_2+b=+cx_2+d\)

Suy ra\(x_1^2+ax_1+b=x^2_1+cx_1+d\\ x^2_2+ax_2+b=x^2_2+cx_2+d\)
Nên P(x)=Q(x)

10 tháng 6 2017

Q(x) =x2 +ax + b

P(x) = x2 +cx + d

Vì x1;x2 đều là nghiệm của P(x); Q(x)

=>x1;x2 là nghiệm của : P(x) - Q(x)=(c-a)x +(d-b)

=> PT: (c-a)x +(d-b) =0 có 2 nghiệm x1;x2

=>\(\left\{{}\begin{matrix}c-a=0\\d-b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=c\\b=d\end{matrix}\right.\)

Nên => P(x) = Q(x) dpcm

6 tháng 2 2017

MNE = MPF

MND =MPD

DME = DMF

7 tháng 2 2017

3. Xét tam giác ADM và tam giác AEM có :

góc ADM = góc AEM = 90 độ

Góc BAM = góc CAM (gt)

AM chung

=>Tam giác ADM = tam giác AEm (c.huyền - g.nhọn)

=>MD = ME (cặp cạnh t/ứng )

AD = AE (cặp cạnh t/ứng )

Xét tam giác MDB và tam giác MEC có :

MB = MC (gt)

góc MDB = góc MEC = 90 độ

MD = ME ( câu a)

=>Tam giác MDB = Tam giác MEC (c.huyền-c.g.vuông)

Vì AD + DB = AB

AE + EC = AC

Mà AD = AE

DB = EC

=>AB = AC

Xét tam giác ABM và tam giác ACM có

AM chung

góc BAM = góc CAM (gt)

AB = AC (CMT)

=>Tam giác ABM = Tam giác ACM (c.huyền-g.nhon)

Vậy có 3 cặp tam giác bằng nhau


TA có a // b

Mà a \(\perp\)AB

=> b \(\perp\)AB ( từ vuông góc đến song song )

Nhìn trên hình ý 

Nó có kí kiệu vuông góc thy

Tl

Mấy bài này nhìn khó quá 

#Kirito

12 tháng 10 2021

làm cả 5 bài luôn hả giang

5 tháng 8 2021
Không có ai bùn qué 😞
5 tháng 8 2021

sorry chị em mới lớp 6 nên ko biết làm mong chị thông cảm ạ

28 tháng 7 2017

Bài 1:

x y m B A C 1 1 2 1

Qua B, vẽ tia Bm sao cho Bm // Ax

Bm // Ax ( cách vẽ ) => góc A1 + góc B1 = 180o ( trong cùng phía )

Mà góc A1 = 140o ( giả thiết ) => góc B1 = 40o

Ta có: góc B1 + góc B2 = góc ABC

Mà góc ABC = 70o ( giả thiết ); góc B1 = 40o ( chứng minh trên )

=> góc B2 = 30o

Ta có: góc B2 + góc C1 = 30o + 150o = 180o

Mà hai góc này ở vị trí trong cùng phía

=> Bm // Cy ( dấu hiệu nhận biết 2 đường thẳng song song )

Ta lại có:

Ax // Bm ( cách vẽ ); Cy // Bm ( chứng minh trên )

=> Ax // Cy ( tính chất 3 quan hệ từ vuông góc đến song song ) ( đpcm )

Bài 3:

A B C F E G N M H 1 2

a) Chứng minh AH < \(\dfrac{1}{2}\) ( AB + AC )

+) Vì AH vuông góc với BC ( giả thiết )

=> AH < AB ( quan hệ giữa đường vuông góc và đường xiên ) ( 1 )

+) Vì AH vuông góc với BC ( giả thiết )

=> AH < AC ( quan hệ giữa đường vuông góc và đường xiên ) ( 2 )

+) Từ ( 1 ) và ( 2 ) => AH + AH < AB + AC

=> 2 . AH < AB + AC

=> AH < \(\dfrac{1}{2}\) ( AB + AC ) ( đpcm )

b) Chứng minh EF = BC

+) Vì BM là đường trung tuyến của tam giác ABC ( giả thiết )

=> \(\dfrac{BG}{BM}=\dfrac{2}{3}\)

=> \(\dfrac{MG}{BG}=\dfrac{1}{2}\)

=> 2 . MG = BG

Mà EM = MG ( do BM là đường trung tuyến của tam giác ABC )

=> EM + MG = BG => EG = BG

+) Vì CN là đường trung tuyến của tam giác ABC ( giả thiết )

=> \(\dfrac{CG}{CN}=\dfrac{2}{3}\)

=> \(\dfrac{GN}{CG}=\dfrac{1}{2}\)

=> 2 . GN = CG

Mà FN = GN ( do CN là đường trung tuyến của tam giác ABC )

=> FN + GN = CG => FG = CG

Góc G1 = góc G2 ( đối đỉnh )

Xét tam giác FEG và tam giác CBG có:

FG = CG ( chứng minh trên )

EG = BG ( chứng minh trên )

Góc G1 = góc G2 ( chứng minh trên )

=> tam giác FEG = tam giác CBG ( c.g.c )

=> EF = BC ( 2 cạnh tương ứng ) ( đpcm )