\(P=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}.....\frac{10000}{9999}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2016

phan h cac so tren ra roi nhan lai la dc xin loi nha may binh bi liet nen ko giai dc

22 tháng 3 2016

\(P=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}.....\frac{10000}{9999}=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}....\frac{100.100}{99.101}\)

\(=\frac{\left(2.3....100\right).\left(2.3.4...100\right)}{\left(1.2.3.4...99\right).\left(3.4.....101\right)}=\frac{100.2}{101}=\frac{200}{101}\)

15 tháng 6 2019

\(M=\frac{3}{4}.\frac{8}{9}.....\frac{9999}{10000}=\frac{1\cdot3}{2\cdot2}\cdot\frac{2\cdot4}{3\cdot3}\cdot....\cdot\frac{99\cdot101}{100\cdot100}=\frac{1\cdot3\cdot2\cdot4\cdot...\cdot99\cdot101}{2^2\cdot3^2\cdot...\cdot100^2}=\frac{1\cdot101}{2\cdot100}=\frac{101}{200}\)Vậy M = \(\frac{101}{200}\)

\(M=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}....\frac{9999}{10000}\)

\(M=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}....\frac{99.101}{100^2}=\frac{1.2.3...99}{2.3.4...100}.\frac{3.4.5...101}{2.3.4...100}=\frac{1}{100}.\frac{101}{2}=\frac{101}{200}\)

10 tháng 7 2016

                                                 \(\frac{3}{4}x\frac{8}{9}x\frac{15}{16}x...x\frac{9999}{10000}\)

                                             \(=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}.....\frac{99.101}{100^2}\)

                                              \(=\frac{1.3.2.4.3.5.....99.101}{2.2.3.3.4.4.....100.100}\)

                                                  \(=\frac{1.2.3.....99}{2.3.4.....100}.\frac{3.4.5.....101}{2.3.4.....100}\)

                                                    \(=\frac{1}{100}.\frac{101}{2}=\frac{101}{200}\)

                                              Ủng hộ mk nha,chúc bn học tốt!!!

10 tháng 7 2016

bn ơi mjk chưa học số có mũ bn giúp mjk nốt nha

7 tháng 7 2016

\(C=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot...\cdot\frac{9999}{10000}\)

\(C=\frac{1\cdot3}{2\cdot2}\cdot\frac{2\cdot4}{3\cdot3}\cdot\frac{3\cdot5}{4\cdot4}\cdot...\cdot\frac{99\cdot101}{100\cdot100}\)

\(C=\frac{1\cdot2\cdot3\cdot...\cdot99}{2\cdot3\cdot4\cdot...\cdot100}\cdot\frac{3\cdot4\cdot5\cdot...\cdot101}{2\cdot3\cdot4\cdot...\cdot100}\)

\(C=\frac{1}{100}\cdot\frac{101}{2}\)

\(C=\frac{101}{200}\)

7 tháng 7 2016

                             \(C=\frac{3}{4}x\frac{8}{9}x\frac{15}{16}x......x\frac{9999}{10000}\)

                            \(C=\frac{1.3}{2^2}x\frac{2.4}{3^2}x\frac{3.5}{4^2}x....x\frac{99.101}{100^2}\)

                             \(C=\frac{1.3.2.4.3.5.......99.101}{2^2.3^2.4^2.......100^2}\)

                            \(C=\frac{1.2.3.......99}{2.3.4....100}x\frac{3.4.5.....101}{2.3.4......100}\)

                           \(C=\frac{1}{100}.\frac{101}{2}=\frac{1.101}{100.2}=\frac{101}{200}\)

                           Ủng hộ mk nha!!!!

23 tháng 4 2015

P=1.3/2.2 . 2.4/3.3 . 3.5/4.4 ... . 99.101/100.100

P=1.2.3....99/2.3.4...100 . 3.4.5...101/2.3.4...100

P=1/100 . 101/2

P=101/200

3 tháng 3 2017

p=101/200

3 tháng 5 2015

\(B=\frac{\left(1.3\right).\left(2.4\right).\left(3.5\right).\left(4.6\right)...\left(99.101\right)}{2^2.3^2.4^2.5^2...100^2}=\frac{\left(1.2.3.4...99\right).\left(3.4.5.6...101\right)}{\left(2.3.4.5...100\right)\left(2.3.4.5...100\right)}=\frac{1.101}{100.2}=\frac{101}{200}\)

3 tháng 5 2015

B = \(\frac{1.3}{2^2}.\frac{2.4}{3^2}\frac{3.5}{4^2}\frac{4.6}{5^2}...\frac{99.101}{100^2}=\frac{1.3.2.4.3.5.4.6...99.101}{2.2.3.3.4.4.5.5...100.100}\)

   =\(\frac{1.2.3...99}{2.3.4...100}.\frac{3.4.5...101}{2.3.4...100}=\frac{1}{100}.\frac{101}{2}=\frac{101}{200}\)

Vật B = \(\frac{101}{200}\)

đúng cái đi   

10 tháng 6 2020

\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{9999}{10000}=\frac{3.8.15...9999}{4.9.16...10000}=\frac{1.3.2.4.3.5...99.101}{2.2.3.3.4.4...100.100}=\frac{\left(1.2.3...99\right)\left(3.4.5...101\right)}{\left(2.3.4...100\right)\left(2.3.4...100\right)}\)

\(\frac{1.101}{100.2}=\frac{101}{200}\)

27 tháng 1 2020

Ta có : \(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)

\(=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{10000}\right)\)

\(=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{15}+...+\frac{1}{10000}\right)\)

\(=99-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\right)< 99\)

\(\Rightarrow\)S<99 (1)

Đặt \(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\)

\(=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

Ta có : \(\frac{1}{2^2}=\frac{1}{2.2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}=\frac{1}{3.3}< \frac{1}{2.3}\)

\(\frac{1}{4^2}=\frac{1}{4.4}< \frac{1}{3.4}\)

...

\(\frac{1}{100^2}=\frac{1}{100.100}< \frac{1}{99.100}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A< 1-\frac{1}{100}< 1\)

\(\Rightarrow\)S>99-1=98 (2)

Từ (1) và (2)

\(\Rightarrow\)98<S<99

\(\Rightarrow\)S\(\notin\)N

Vậy S\(\notin\)N.