Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(xy-3x-y=6\)
\(=>xy+3x-y-3=6-3\)
\(=>x\left(y+3\right)-\left(y+3\right)=3\)
\(=>\left(y+3\right)\left(x-1\right)=3\)
y+3 | -1 | 3 | 1 | -3 | |
x-1 | -3 | 1 | 3 | -1 |
y+3 | -1 | 3 | -3 | 1 |
y | -4 | -1 | -7 | -3 |
x-1 | -3 | 1 | 3 | -1 |
x | -2 | 2 | 4 | 0 |

a/ \(x^2+y^2=0\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\) \(\Rightarrow A=0\)
b/ Do \(x=19\Rightarrow20=x+1\)
\(B=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+20\)
\(B=x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+20\)
\(B=20-x=20-19=1\)
c/ \(x+y+z=0\Rightarrow\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\)
\(C=\frac{\left(x+y\right)}{y}.\frac{\left(y+z\right)}{z}.\frac{\left(x+z\right)}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=\frac{-xyz}{xyz}=-1\)

Bài 1:
a: \(\Leftrightarrow\dfrac{x+2}{2}=x-5\)
=>2x-10=x+2
=>x=12
b: \(\Leftrightarrow\left(x+2\right)^2=100\)
=>x+2=10 hoặc x+2=-10
=>x=-12 hoặc x=8
c: \(\Leftrightarrow\left(2x-5\right)^3=27\)
=>2x-5=3
=>2x=8
=>x=4

1) \(A=2xy^2+3xy-xy^2+5xy^2+5xy+1\)
a, \(A=2xy^2+3xy-xy^2+5xy^2+5xy+1\)
= \(6xy^2+8xy+1\)
b, giá trị của biểu thức tại x = 1 và y = 2 là:
\(A=6.1.2^2+8.1.2+1=41\)
2) và 3) bạ vt khó hiểu wa
2) đề bài này là tìm b.a.c á bn, ghi đề chưa rõ lắm nên tui cx pó tay
3)
a/ Có: \(4x+9=0\)
\(\Leftrightarrow4x=-9\Rightarrow x=-\dfrac{9}{4}\)
vậy.............
b/ Có: \(-5x+6=0\)
\(\Leftrightarrow-5x=-6\Rightarrow x=\dfrac{6}{5}\)
Vậy....................
c/ có: \(x^2-4=0\)
\(\Leftrightarrow x^2=4\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy ..................
d/ Có: \(9-x^2=0\)
\(\Leftrightarrow x^2=9\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy.............
e/ Có: \(\left(y+2\right)\left(3-y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y+2=0\\3-y=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=-2\\y=3\end{matrix}\right.\)
Vậy...............
p/s: bài 3 này thuộc dạng cơ bản nên lần sau nhớ suy nghĩ trc khi đăng câu hỏi

a) \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\) và \(2x-3y+z=6\)
Ta có: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\)( 1 )
\(\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)( 2 )
Từ (1) và (2) ta có: \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\) và \(2x-3y+z=6\)
Asp dụng t/c DTSBN, ta có:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
\(\frac{x}{9}=3\Rightarrow x=27\)
\(\frac{y}{12}=3\Rightarrow y=36\)
\(\frac{z}{20}=3\Rightarrow z=60\)
Vậy \(x=27;y=36;z=60\)
A
A