Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 ) Xét : \(x^2-9=0\)
\(\Leftrightarrow x^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy nghiệm của đ/t trên là : \(\left[{}\begin{matrix}3\\-3\end{matrix}\right.\)
2 ) \(2\left(x-y\right)\left(x-y\right)+\left(2x-y\right)^2-\left(x-y\right)^2\)
\(=2\left(x-y\right)^2+\left(2x-y\right)^2-\left(x-y\right)^2\)
\(=\left(x-y\right)^2+\left(2x-y\right)^2\)
\(=x^2-2xy+y^2+4x^2-4xy+y^2\)
\(=5x^2-6xy+2y^2\)
3 ) \(x-x^2-3=-\left(x^2-x+3\right)=-\left(x^2-x+\dfrac{1}{4}+\dfrac{11}{4}\right)=-\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}\right]=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{11}{4}\le-\dfrac{11}{4}\forall x\)Dấu " = " xảy ra \(\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)
Vậy Max của b/t trên là : \(-\dfrac{11}{4}\Leftrightarrow x=\dfrac{1}{2}\)
Lời giải:
$N=p^{m+2}q-pq^{m+3}-p^{m+3}q^{n+4}$
$=pq(p^{m+1}-q^{m+2}-p^{m+2}q^{n+3})$
P = (x-1)(2x+3)
=> P=2x2+3x-2x-3
=> P=2x2+x-3
=> P=\(2x^2+x+\dfrac{1}{8}-\dfrac{25}{8}\)
=> P=2\(\left(x^2+\dfrac{1}{2}x+\dfrac{1}{16}\right)-\dfrac{25}{8}\)
=> P=\(2\left(x+\dfrac{1}{4}\right)^2-\dfrac{25}{8}\)
=> min P =\(\dfrac{-25}{8}\) khi \(x+\dfrac{1}{4}=0\Rightarrow x=-\dfrac{1}{4}\)
Bài 1:
=>x^4-x^3+5x^2+x^2-x+5+n-5 chia hết cho x^2-x+5
=>n-5=0
=>n=5
1/
Áp dụng phương pháp hệ số bất định ta có
x4-6x3+12x2-14x+3
= (x2+ax+b)(x2+cx+d)
= x4+ (a+c)x3+ (ac+b+d)x2+(ad+bc)x + bd
Đồng nhất đa thức trên với đề bài ta có hệ phương trình
\(\Rightarrow\left[{}\begin{matrix}a+c=-6\\ac+b+d=12\\ad+bc=-14\\bd=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a=-2\\b=3\\c=-4\\d=1\end{matrix}\right.\)
Thay a,b,c,d vào ta được
x4-6x3+12x2-14x+3
= (x2+ax+b)(x2+cx+d)
= (x2-2x+3)(x2-4x+1)
= a^3.(b^2-c^2)+b^3.(c^2-b^2+b^2-a^2)+c^3.(a^2-b^2)
=a^3.(b^2-c^2) - b^3.(b^2-c^2 ) -b^3.(a^2-b^2)+c^3(a^2-b^2)
= (b^2 -c^2).(a^3-b^3) -(a^2-b^2).(b^3-c^3)
= (b-c)(b+c)(a-b)(a^2+ab+b^2)-(a-b)(a+b)(b-c)(b^2+bc +c^2)
=(b-c)(a-b).(b.a^2 +ab^2 +b^3 +ca^2 +abc +cb^2 - ab^2- abc - ac^2 - b^3-b^2 .c -bc^2)
=(b-c)(a-b)(a^2.b +ca^2 -ac^2-bc^2)
=(b-c)(a-b)(a-c)(ab+bc+ac)
Bài 1:
a) Ta có: \(VT=\frac{-u^2+3u-2}{\left(u+2\right)\left(u-1\right)}\)
\(=\frac{-\left(u^2-3u+2\right)}{\left(u+2\right)\left(u-1\right)}\)
\(=\frac{-\left(n^2-u-2u+2\right)}{\left(u+2\right)\left(u-1\right)}\)
\(=\frac{-\left[u\left(u-1\right)-2\left(u-1\right)\right]}{\left(u+2\right)\left(u-1\right)}\)
\(=\frac{-\left(u-1\right)\left(u-2\right)}{\left(u+2\right)\left(u-1\right)}\)
\(=\frac{2-u}{u+2}\)(1)
Ta có: \(VP=\frac{u^2-4u+4}{4-u^2}\)
\(=\frac{\left(u-2\right)^2}{-\left(u-2\right)\left(u+2\right)}\)
\(=\frac{-\left(u-2\right)}{u+2}\)
\(=\frac{2-u}{u+2}\)(2)
Từ (1) và (2) suy ra \(\frac{-u^2+3u-2}{\left(u+2\right)\left(u-1\right)}=\frac{u^2-4u+4}{4-u^2}\)
b) Ta có: \(VT=\frac{v^3+27}{v^2-3v+9}\)
\(=\frac{\left(v+3\right)\left(v^3-3u+9\right)}{v^2-3u+9}\)
\(=v+3=VP\)(đpcm)
Bài 2:
a) Ta có: \(\frac{3x^2-2x-5}{M}=\frac{3x-5}{2x-3}\)
\(\Leftrightarrow\frac{3x^2-5x+3x-5}{M}=\frac{3x-5}{2x-3}\)
\(\Leftrightarrow\frac{x\left(3x-5\right)+\left(3x-5\right)}{M}=\frac{3x-5}{2x-3}\)
\(\Leftrightarrow\frac{\left(3x-5\right)\left(x+1\right)}{M}=\frac{3x-5}{2x-3}\)
\(\Leftrightarrow M=\frac{\left(3x-5\right)\left(x+1\right)\left(2x-3\right)}{3x-5}\)
\(\Leftrightarrow M=\left(x+1\right)\left(2x-3\right)\)
\(\Leftrightarrow M=2x^2-3x+2x-3\)
hay \(M=2x^2-x-3\)
Vậy: \(M=2x^2-x-3\)
b) Ta có: \(\frac{2x^2+3x-2}{x^2-4}=\frac{M}{x^2-4x+4}\)
\(\Leftrightarrow\frac{2x^2+4x-x-2}{\left(x-2\right)\left(x+2\right)}=\frac{M}{\left(x-2\right)^2}\)
\(\Leftrightarrow\frac{2x\left(x+2\right)-\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{M}{\left(x-2\right)^2}\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(2x-1\right)}{\left(x+2\right)\left(x-2\right)}=\frac{M}{\left(x-2\right)^2}\)
\(\Leftrightarrow\frac{M}{\left(x-2\right)^2}=\frac{2x-1}{x-2}\)
\(\Leftrightarrow M=\frac{\left(2x-1\right)\left(x-2\right)^2}{\left(x-2\right)}\)
\(\Leftrightarrow M=\left(2x-1\right)\left(x-2\right)\)
\(\Leftrightarrow M=2x^2-4x-x+2\)
hay \(M=2x^2-5x+2\)
Vậy: \(M=2x^2-5x+2\)
Bài 3:
a) Ta có: \(\frac{x+1}{N}=\frac{x^2-2x+4}{x^3+8}\)
\(\Leftrightarrow\frac{x+1}{N}=\frac{x^2-2x+4}{\left(x+2\right)\left(x^2-2x+4\right)}\)
\(\Leftrightarrow\frac{x+1}{N}=\frac{1}{x+2}\)
\(\Leftrightarrow N=\left(x+1\right)\left(x+2\right)\)
hay \(N=x^2+3x+2\)
Vậy: \(N=x^2+3x+2\)
n) Ta có: \(\frac{\left(x-3\right)\cdot N}{3+x}=\frac{2x^3-8x^2-6x+36}{2+x}\)
\(\Leftrightarrow\frac{N\cdot\left(x-3\right)}{x+3}=\frac{2x^3+4x^2-12x^2-24x+18x+36}{x+2}\)
\(\Leftrightarrow\frac{N\cdot\left(x-3\right)}{\left(x+3\right)}=\frac{2x^2\left(x+2\right)-12x\left(x+2\right)+18\left(x+2\right)}{x+2}\)
\(\Leftrightarrow\frac{N\cdot\left(x-3\right)}{x+3}=\frac{\left(x+2\right)\left(2x^2-12x+18\right)}{x+2}\)
\(\Leftrightarrow\frac{N\cdot\left(x-3\right)}{x+3}=2x^2-12x+18\)
\(\Leftrightarrow\frac{N\cdot\left(x-3\right)}{x+3}=2x^2-6x-6x+18=2x\left(x-3\right)-6\left(x-3\right)=2\cdot\left(x-3\right)^2\)
\(\Leftrightarrow N\cdot\left(x-3\right)=\frac{2\left(x-3\right)^2}{x+3}\)
\(\Leftrightarrow N=\frac{2\left(x-3\right)^2}{x+3}:\left(x-3\right)=\frac{2\left(x-3\right)^2}{\left(x+3\right)\left(x-3\right)}\)
\(\Leftrightarrow N=\frac{2\left(x-3\right)}{x+3}\)
hay \(N=\frac{2x-6}{x+3}\)
Vậy: \(N=\frac{2x-6}{x+3}\)
ai làm đượ mình **** cho