Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^3+ax^2+2x+b\right)=\left(x^2+x+1\right)\left(cx+d\right).\)
\(x^3+ax^2+2x+b=cx^3+x^2\left(c+d\right)+x\left(c+d\right)+d\)
Đồng nhất 2 vế có
\(x^3=cx^3\Rightarrow c=1\)
\(2x=x\left(c+d\right)\Leftrightarrow2x=x\left(1+d\right)\Rightarrow d=1\)
\(ax^2=x^2\left(c+d\right)\Rightarrow a=2\)
\(b=d\Rightarrow b=1\)
2/ Câu B tương tự nha bạn
MK làm theo phương pháp hệ số bất định
a, Vì số bị chia có bậc 3 mà số chia có bậc 2 nên thương sẽ có bậc 1
Hệ số của thương là : x3:x2=x
Gọi đa thức thương là : x + c
\(x^3+ax^2+2x+b=\left(x^2+x+1\right).\left(x+c\right)\)
\(\Rightarrow x^3+ax^2+2x+b=x^3+x^2c+x^2+cx+x+c\)
\(\Rightarrow x^3+ax^2+2x+b=x^3+x^2\left(c+1\right)+x\left(c+1\right)+c\)
Theo pp hệ số bất định
\(\Rightarrow\hept{\begin{cases}a=c+1\\2=c+1\\b=c\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=2\\c=2-1=1\\b=c=1\end{cases}}\)
Vậy a = 2 ; b = 1
Câu b tương tự nhé
1. Đa thức chia có bậc là 2 nên bậc của đa thức dư không vượt quá 1
Gỉa sử \(f_{\left(x\right)}\) chia \(x^2-1\) được thương là \(g_{\left(x\right)}\) và số dư là ax+b \(\Rightarrow f_{\left(x\right)}=x^{100}+x^{99}+x^{98}+...+x^2+1=\left(x^2-1\right).g_{\left(x\right)}+\left(ax+b\right)\)
Ta có: \(f_{\left(1\right)}=1^{100}+1^{99}+...+1^2+1=\left(1^2-1\right).g_{\left(1\right)}+\left(a.1+b\right)\)
\(\Rightarrow a+b=101\) (1)
\(f_{\left(-1\right)}=\left(-1\right)^{100}+\left(-1\right)^{99}+...+\left(-1\right)+1=\left[\left(-1\right)^2-1\right].g_{\left(-1\right)}+\left[a\left(-1\right)+b\right]\)
\(\Rightarrow-a+b=1\) (2)
Từ (1) và (2) \(\Rightarrow a+b-a+b=102\Rightarrow2b=102\Rightarrow b=51\)
\(\Rightarrow-a+51=1\Rightarrow-a=-50\Rightarrow a=50\)
Vậy đa thức dư là 50x+51
2. Đa thức \(4x^3+ax+b\) chia hết cho các đa thức x-2 và x+1, mà x-2 và x+1 không có nhân tử chung có bậc khác 0 nên \(4x^3+ax+b⋮\left(x-2\right)\left(x+1\right)=x^2-x-2\)
Đặt \(4x^3+ax+b=\left(x^2-x-2\right)\left(4x+c\right)\)
\(=4x^3+cx^2-4x^2-cx-8x-2c\)
\(=4x^3+\left(c-4\right)x^2-\left(c+8\right)x-2c\)
\(\Rightarrow\left\{{}\begin{matrix}c-4=0\\c+8=-a\\-2c=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}c=4\\a=-12\\b=-8\end{matrix}\right.\Rightarrow2a-3b=2.\left(-12\right)-3.\left(-8\right)=0\)
Vậy 2a-3b=0
1. Ta có \(\frac{x^3+4x^2+ax+b}{x^2+x-2}=\frac{x\left(x^2+x-2\right)+3\left(x^2+x-2\right)+\left(a-1\right)x+b+6}{x^2+x-2}=x+3+\frac{\left(a-1\right)x+b+6}{x^2+x-2}\)
Để đa thức \(x^3+4x^2+ax+b\)chia hết cho đa thức \(x^2+x-2\)
thì \(\hept{\begin{cases}a-1=0\\b+6=0\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=-6\end{cases}}}\)
Vậy a=1;b=-6 thì ....
2. Ta có \(M=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left[\left(x-1\right)\left(x+6\right)\right].\left[\left(x+2\right)\left(x+3\right)\right]\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\ge-36\forall x\)
\(\Rightarrow M\ge-36\)
Vậy \(MinM=-36\Leftrightarrow x^2+5x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
1) Có A = x3 + 4x2 + ax + b
= x3 + x2 - 2x + 3x2 + 3x - 6 - x + ax + b + 6
= x(x2 + x - 2) + 3(x2 + x - 2) + (a - 1)x + (b + 6)
= (x2 + x - 2)(x + 3) + (a - 1)x + (b + 6)
Do (x2 + x - 2)(x + 3) chia hết cho x2 + x - 2 nên để A chia hết cho x2 + x - 2
thì (a - 1)x + (b + 6) = 0 với mọi x
\(\Leftrightarrow\hept{\begin{cases}a-1=0\\b+6=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=-6\end{cases}}}\)
2) Có M = (x - 1)(x + 2)(x + 3)(x + 6)
= [(x - 1)(x + 6)] [(x + 2)(x + 3)]
= (x2 + 5x - 6)(x2 + 5x + 6)
= (x2 + 5x)2 - 36
Thấy (x2 + 5x)2 ≥ 0 với mọi x
=> (x2 + 5x)2 - 36 ≥ -36 với mọi x
=> M ≥ -36 với mọi x
Dấu "=" xảy ra khi x2 + 5x = 0
<=> x(x + 5) = 0
<=> x = 0 hoặc x + 5 = 0
<=> x = 0 hoặc x = -5
Vậy min M = -36, đạt đc khi x = 0 hoặc x = -5
P/s: ko chắc
a) Cho x2 - x + 5=0 =>x={ \(\frac{1}{2}+\frac{\sqrt{19}}{2}i;\frac{1}{2}-\frac{\sqrt{19}}{2}i\) }
Thay giá trị của x là \(\frac{1}{2}+\frac{\sqrt{19}}{2}i\)hoặc \(\frac{1}{2}-\frac{\sqrt{19}}{2}i\) vừa tìm được vào x4 - x3 + 6x2- x sẽ luôn được kết quả là -5
=>-5 +a=0 => a=5
b) Cho x+2=0 => x=-2
Thay giá trị của x vào biểu thức 2x3 - 3x2 + x sẽ được kết quả là -30
=> -30 + a=0 => a=30
a) Cho 3n +1 =0 => n= \(\frac{-1}{3}\)
Thay n= \(\frac{-1}{3}\)vào biểu thức 3n3 + 10n2 -5 sẽ được kết quả -4
Vậy n = -4
b) Cho n-1=0 => n=1
Thay n=1 vào biểu thức 10n2 + n -10 sẽ được kết quả là 1
Vậy n = 1
a: \(\Leftrightarrow x^3+2x^2-3x^2-6x+5x+10+a-10⋮x+2\)
=>a-10=0
=>a=10
b: \(\Leftrightarrow x^3+x^2+x+\left(a-1\right)x^2+\left(a-1\right)x+a-1+\left(2-a\right)x+b-a+1⋮x^2+x+1\)
=>2-a=0 và b-a+1=0
=>a=2; b=a-1=2-1=1
a-b=-100 -(-4950)=4850
Chắc 100%
=2564/3=3245
2546