Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(P=4x^2y^2-3xy^3+5x^2y^2-5xy^3-xy+x-1\)
\(P=\left(4x^2y^2+5x^2y^2\right)-\left(3xy^3+5xy^3\right)-xy+x-1\)
\(P=9x^2y^2-8xy^3-xy+x-1\)
Bậc của đa thức P là: \(2+2=4\)
Thay x=-1 và y=2 vào P ta có:
\(P=9\cdot\left(-1\right)^2\cdot2^2-8\cdot-1\cdot2^3-\left(-1\right)\cdot2+\left(-1\right)-1=100\)
\(Q=-4x^2y^2-xy+4xy^3+2xy-6x^3y-4x^3y\)
\(Q=-4x^2y^2-\left(xy-2xy\right)+4xy^3-\left(6x^3y+4x^3y\right)\)
\(Q=-4x^2y^2+xy+4xy^3-10x^3y\)
Bậc của đa thức Q là: \(2+2=4\)
Thay x=-1 và y=2 vào Q ta có:
\(Q=-4\cdot\left(-1\right)^2\cdot2^2+\left(-1\right)\cdot2+4\cdot-1\cdot2^3-10\cdot\left(-1\right)^3\cdot2=-30\)
\(\begin{array}{l}M = \dfrac{1}{3}{x^2}y + x{y^2} - xy + \dfrac{1}{2}x{y^2} - 5xy - \dfrac{1}{3}{x^2}y\\ = \left( {\dfrac{1}{3}{x^2}y - \dfrac{1}{3}{x^2}y} \right) + \left( {x{y^2} + \dfrac{1}{2}x{y^2}} \right) + \left( { - xy - 5xy} \right)\\ = \dfrac{3}{2}x{y^2} - 6xy\end{array}\)
Thay x=0,5 và y=1 vào M ta được:
\(M = \dfrac{3}{2}.0,{5.1^2} - 6.0,5.1 = - 2,25.\)
a) \(\left(4x^4-8x^2y^2+12x^5y\right):\left(-4x^2\right)\)
\(=4x^4:-4x^2-8x^2y^2:-4x^2+12x^4y:-4x^2\)
\(=-x^2+2y^2-3x^2y\)
b) \(x^2\left(x-y^2\right)-xy\left(1-xy\right)-x^3\)
\(=x^3-x^2y^2-xy+x^2y^2-x^3\)
\(=-xy\)
\(A,xy\left(2x^2-3\right)-x^2\left(5xy+y\right)+x^2y\\ =2x^3y-3xy-5x^3y-x^2y+x^2y\\ =\left(2x^3y-5x^3y\right)+\left(-x^2y+x^2y\right)-3xy\\ =-3x^3y-3xy\)
\(B,3xyz\left(y-2\right)-5yz\left(1-y\right)-8z\left(y^2-3\right)\\ =3xy^2z-6xyz-5yz+5y^2z-8y^2z+24z\\ =3xy^2z-6xyz+\left(5y^2z-8y^2z\right)-5yz+24z\\ =3xy^2z-6xyz-3y^2z-5yz+24z\)
\(a,-x^2y-2xy+2x^2y+5xy+2\\ =x^2y+3xy+2\\ b,-2xy+\dfrac{3}{2}xy^2+\dfrac{1}{2}xy^2+xy\\ =-xy+2xy^2\)
\(\begin{array}{l}A + B = \left( {5{x^2}y + 5x - 3} \right) + \left( {xy - 4{x^2}y + 5x - 1} \right)\\ = 5{x^2}y + 5x - 3 + xy - 4{x^2}y + 5x - 1\\ = \left( {5{x^2}y - 4{x^2}y} \right) + xy + \left( {5x + 5x} \right) + \left( { - 3 - 1} \right)\\ = {x^2}y + xy + 10x - 4\end{array}\)
\(\left( {3{x^2} - 5xy - 4{y^2}} \right).\left( {2{x^2} + {y^2}} \right) + \left( {2{x^4}y^2 + {x^3}{y^3} + {x^2}{y^4}} \right):\left( {\dfrac{1}{5}xy} \right)\\\)
\(= 3{x^2}.2{x^2} + 3{x^2}.{y^2} - 5xy.2{x^2} - 5xy.{y^2} - 4{y^2}.2{x^2} - 4{y^2}.{y^2} + 2{x^4}y^2:\left( {\dfrac{1}{5}xy} \right) + {x^3}{y^3}:\left( {\dfrac{1}{5}xy} \right) + {x^2}{y^4}:\left( {\dfrac{1}{5}xy} \right)\\\)
\(= 6{x^4} + 3{x^2}{y^2} - 10{x^3}y - 5x{y^3} - 8{x^2}{y^2} - 4{y^4} + 10{x^3}y + 5{x^2}{y^2} + 5x{y^3}\\\)
\(= 6{x^4} - 4{y^4}+ ( - 10{x^3}y + 10{x^3}y) + \left( { - 5x{y^3} + 5x{y^3}} \right) + \left( {3{x^2}{y^2} - 8{x^2}{y^2} + 5{x^2}{y^2}} \right)\\\)
\(= 6{x^4} - 4{y^4}\)
\(\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=\left(x^3-y^3\right)-\left(x^3+y^3\right)=x^3-y^3-x^3-y^3=-2y^3\)
\(\dfrac{1}{3}x^2y+xy^2-xy+\dfrac{1}{2}xy^2-\dfrac{1}{3}x^2y\\ =\left(\dfrac{1}{3}x^2y-\dfrac{1}{3}x^2y\right)+\left(xy^2+\dfrac{1}{2}xy^2\right)-xy\\ =0+xy^2\cdot\left(1+\dfrac{1}{2}\right)-xy\\ =\dfrac{3}{2}xy^2-xy\)