\(2x^2yz\left(-3xy^3z\right)\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2018

Giải:

a) \(2x^2yz\left(-3xy^3z\right)=-6x^3y^4z^2\)

Bậc của đơn thức: \(3+4+2=9\)

b) \(\left(-12xyz\right)\left(\dfrac{-4}{3}x^2yz^3\right)y=16x^3y^3z^4\)

Bậc của đơn thức: \(3+3+4=10\)

c) \(-2x^2y\left(-3xy^2\right)^3=-2x^2y\left(-27x^3y^6\right)=54x^5y^7\)

Bậc của đơn thức: \(5+7=12\)

d) \(12\dfrac{1}{2}x^4\left(-\dfrac{2}{5}x^3y\right)^2=6x^4\left(\dfrac{4}{25}x^6y^2\right)=\dfrac{24}{25}x^{10}y^2\)

Bậc của đơn thức: \(10+2=12\)

31 tháng 5 2018

\(a,2x^2yz\left(-3xy^3z\right)=-6x^3y^4z^2\)

Bậc của đơn thức là 9

\(b,\left(-12xyz\right)\left(-\dfrac{4}{3}x^2yz^3\right)y=16x^3y^3z^4\)

Bậc của đơn thức: 10

\(c,-2x^2y\left(-3xy^2\right)^3\)

\(-2x^2y.\left(-27\right)x^3y^6=54x^5y^7\)

Bậc của đơn thức: 12

\(d,12\dfrac{1}{2}x^4\left(-\dfrac{2}{5}x^3y\right)^2\)

\(=12\dfrac{1}{2}x^4\cdot\dfrac{4}{25}x^6y^2=2x^{10}y^2\)

Bậc của đơn thức : 12

2 tháng 5 2017

Hỏi đáp Toán

a: \(=\dfrac{1}{3}\cdot24\cdot4\cdot x^2\cdot xy\cdot xy=32x^4y^2\)

Phần biến là \(x^4;y^2\)

Bậc là 6

Hệ số là 32

b: \(=xy^2\cdot\left(-2\right)xy^3=-2x^2y^5\)

Phần biến là \(x^2;y^5\)

Bậc là 7

Hệ số là -2

c: \(=\dfrac{1}{5}x^2y^3z\cdot\dfrac{1}{8}x^3y^3z^3=\dfrac{1}{40}x^5y^6z^4\)

PHần biến là \(x^5;y^6;z^4\)

Bậc là 15

Hệ só là 1/40

d: \(=\dfrac{1}{3}\cdot ab\cdot xy\cdot a^2\cdot x^2y^4=\dfrac{1}{3}a^3b\cdot x^3y^5\)

Phần biến là \(x^3y^5\)

Hệ số là \(\dfrac{1}{3}a^3b\)

Bậc là 8

24 tháng 7 2017

mình làm lại câu b) nha

b) |x-3|=-4

th1: x-3=-4

x=3+(-4)

x=-1

th2: x-3=4

x=3+4

x=7

24 tháng 7 2017

b) \(\left|x-3\right|=-4\)

t/h1:\(x-3=-4\)

\(x=3-\left(-4\right)\)

\(x=7\)

t/h2:\(x-3=4\)

\(x=3-4\)

\(x=-1\)

a: =>|x-1/4|=3/4

=>x-1/4=3/4 hoặc x-1/4=-3/4

=>x=1 hoặc x=-1/2

b: \(\left|x+\dfrac{1}{2}\right|=\dfrac{1}{2}-\dfrac{9}{4}=\dfrac{2-9}{4}=-\dfrac{7}{4}\)(vô lý)

c: \(\Leftrightarrow\left[{}\begin{matrix}2x+5=1-x\\2x+5=x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-4\\x=-6\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{4}{3};-6\right\}\)

e: =>|3/2-x|=0

=>3/2-x=0

hay x=3/2

25 tháng 2 2019

1) a)

=\(\left(4-1+8\right)x^2=11x^2\)

b) =\(\left(\dfrac{1}{2}-\dfrac{3}{4}+1\right)x^2y^2=\dfrac{3}{4}x^2y^2\)

c) =(3-7+4-6)y=5y 2) a) ...=\(\left[\left(\dfrac{-2}{3}y^3\right)-\dfrac{1}{2}y^3\right]+3y^2-y^2\\ =\left[\left(\dfrac{-2}{3}-\dfrac{1}{2}\right)y^3\right]+\left(3-1\right)y^2=\dfrac{-7}{6}y^3+2y^2\) b) ...=\(\left(5x^3-x^3\right)-\left(3x^2+4x^2\right)+\left(x-x\right)=4x^3-7x^2\) 3) a)A=\(\left(5.\dfrac{1}{2}\right).\left(x.x^2.x\right)\left(y^2.y^2\right)=\dfrac{5}{2}x^4y^4\) b)Vậy Đơn thức A có bậc 8; hệ số là \(\dfrac{5}{2}\); phần biến là \(x^4y^4\) c)Khi x=1;y=-1 thì A=\(\dfrac{5}{2}.1^4.\left(-1\right)^4=\dfrac{5}{2}\)

13 tháng 8 2017

Bài 1:

a) \(x^2-3=1\)

\(\Rightarrow x^2=1+3=4\)

\(\Rightarrow x=\pm2\)

b)\(2x^3+12=-4\)

\(\Rightarrow2x^3=-4-12=-16\)

\(\Rightarrow x^3=-8\)

\(\Rightarrow x=-2\)

c)\(\left(2x-3\right)^2=16\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=4\\2x-3=-4\end{matrix}\right.\Leftrightarrow}\left[{}\begin{matrix}x=\dfrac{7}{2}\\-\dfrac{1}{2}\end{matrix}\right.\)

13 tháng 8 2017

a) \(x^2-3=1\Rightarrow x^2=4\Rightarrow x=\pm2\)

b) \(2x^3+12=-4\Rightarrow2x^3=-16\)

\(\Rightarrow x^3=-\dfrac{16}{2}=-8=-2^3\)

\(\Rightarrow x=-2\)

c) \(\left(2x-3\right)^2=16\)

\(\Rightarrow\left[{}\begin{matrix}2x-3=4\\2x-3=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)

d,h,i,k cững tương tự....

30 tháng 5 2017

a)

\(\left(-\dfrac{1}{3}xy\right).\left(3x^2yz^2\right)=\left(-\dfrac{1}{3}.3\right).\left(x.x^2\right).\left(y.y\right).z^2=-x^3y^2z^2\), có hệ số là -1.

b)

\(-54y^2.bx=\left(-54.b\right).x.y^2=-54bxy^2\), có hệ số là -54b.

c)

\(-2x^2y.\left(-\dfrac{1}{2}\right)^2.x\left(y^2z\right)^3=-2x^2y.\left(\dfrac{1}{4}xy^6z^3\right)=\left(-2.\dfrac{1}{4}\right).\left(x^2x\right).\left(yy^6\right).z^3=-\dfrac{1}{2}x^3y^7z^3\), có hệ số là \(-\dfrac{1}{2}\).