Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=ab\cdot\dfrac{4}{3}a^2b^4\cdot7abc=\dfrac{28}{3}a^4b^6c\)
b: \(a^3b^3\cdot a^2b^2c=a^5b^5c\)
c: \(=\dfrac{2}{3}a^3b\cdot\dfrac{-1}{2}ab\cdot a^2b=\dfrac{-1}{3}a^6b^3\)
d: \(=-\dfrac{7}{3}a^3c^2\cdot\dfrac{1}{7}ac^2\cdot6abc=-2a^5bc^5\)
e: \(=\dfrac{-3}{2}\cdot\dfrac{1}{4}\cdot ab^2\cdot bca^2\cdot b=\dfrac{-3}{8}a^3b^4c\)
bài 1:
tìm a,b,c biết:
3a = 2b; 4b = 3c và a + 2b - 3c
giải
\(3a=2b\Rightarrow\frac{a}{2}=\frac{b}{3};4b=3c\Rightarrow\frac{b}{3}=\frac{c}{4}\)
\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}\) và a + 2b - 3c
áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)
với \(\frac{a}{2}=5\Rightarrow a=5.2=10\)
với \(\frac{2b}{6}=5\Rightarrow b=\frac{5.6}{2}=15\)
với \(\frac{3c}{12}=5\Rightarrow c=\frac{5.12}{3}=20\)
vậy a = 10,b=15,c=20
tương tự câu 2
a. \(4ab.\frac{1}{3}ac-2aca-9a^2.\frac{1}{2}b+10a^2.\frac{1}{5}c+a^2b-a^2bc\)
\(=\left(4.\frac{1}{3}\right)\left(a.a\right).bc-2a^2c-\left(9.\frac{1}{2}\right)a^2b+\left(10.\frac{1}{5}\right)a^2c+a^2b-a^2bc\)
\(=\frac{4}{3}a^2bc-2a^2c-\frac{9}{2}a^2b+2a^2c+a^2b-a^2bc\)
\(=\left(\frac{4}{3}a^2bc-a^2bc\right)+\left(-2a^2c+2a^2c\right)+\left(-\frac{9}{2}a^2b+a^2b\right)\)
\(=\frac{1}{3}a^2bc+\left(-\frac{7}{2}a^2b\right)\)
b. \(2ab-2bc.c+ab+\frac{1}{2}c^2b-4cb^2+2bcb\)
\(=2ab-2bc^2+ab+\frac{1}{2}c^2b-4cb^2+2b^2c\)
\(=\left(2ab+ab\right)+\left(-2bc^2+\frac{1}{2}c^2b\right)+\left(-4cb^2+2b^2c\right)\)
\(=3ab+-\frac{3}{2}bc^2+-2b^2c\)
\(=b\left(3a-\frac{3}{2}c^2-2bc\right)\)
cảm ơn bạn nha