K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2018

a) \(\left(a+b+c\right)-\left(a-b+c\right)=a+b+c-a+b-c=2b\)

b) \(\left(a+b-c\right)+\left(a-b\right)-\left(a-b-c\right)=a+b-c+a-b-a+b+c\)

                                                                                  \(=a+b\)

c) -(a-b-c)+(-a+b-c)-(-a-b+c) = -a+b+c-a+b-c+a+b-c = -a+3b-c

29 tháng 7 2018

a, ( a + b + c ) - ( a - b + c )

= a + b + c - a + b - c

= 2b

b, ( a + b - c ) + ( a - b ) - ( a - b - c )

= a + b - c + a - b - a + b + c

= a + b

c, - ( a - b - c ) + ( - a + b - c ) - ( - a - b + c)

= - a - b - c - a + b - c + a - b + c

= a - b - c

31 tháng 1 2016

giải dùm mk vs đi

26 tháng 7 2016

\(\frac{a}{b}=\frac{c}{d}\)

Áp dụng tính chất dãy tì số bằng nhau, ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}\left(đpcm\right)\)

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

2 tháng 8 2018

Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a}{c}.\frac{a}{c}.\frac{a}{c}=\frac{b}{d}.\frac{b}{d}.\frac{b}{d}=\frac{a-b}{c-d}.\frac{a-b}{c-d}.\frac{a-b}{c-d}=\frac{a^3}{c^3}=\frac{b^3}{d^3}=\left(\frac{a-b}{c-d}\right)^3\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a^3}{c^3}=\frac{b^3}{d^3}=\left(\frac{a-b}{c-d}\right)^3=\frac{a^3+b^3}{c^3+d^3}\)

                                                đpcm

Tham khảo nhé~

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

29 tháng 12 2015

Vì mỗi số chia cho 3 số con lại đều bằng nhau

Suy ra mỗi số phải bằng nhau

Suy ra a/(c+b+d) = a/(a+a+a)=a/3a=1/3

1 tháng 1 2018

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a} = \frac{a+b+c}{b+c+a}=1\) (tính chất của dãy tỉ số bằng nhau)

=> a=b=c

chúc bn học giỏi

1 tháng 1 2018

ta có 

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow a=b=c\)

18 tháng 10 2020

Ta có \(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{bca}\)

Lại có\(\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c}{c}\)

=> \(\frac{b+c-a}{a}+2=\frac{a+c-b}{b}+2=\frac{a+b-c}{c}+2\)

=> \(\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)

Nếu a + b + c = 0

=> a +  b = -c

=> b + c = -a

=> a + c = - b

Khi đó A = \(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{bca}=\frac{\left(-c\right)\left(-a\right)\left(-b\right)}{abc}=\frac{-abc}{abc}=-1\)

Nếu a + b + c \(\ne\) 0

=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)

Khi đó A = \(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2a.2b.2c}{abc}=\frac{8abc}{abc}=8\)

Vậy khi a + b + c = 0 => A = -1

khi a + b + c \(\ne\)0 => A  = 8

14 tháng 8 2021

mik giống bạn ý