Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{4}{\sqrt{7}+\sqrt{3}}+\dfrac{4}{\sqrt{7}-\sqrt{3}}\\ =\dfrac{4\left(\sqrt{7}-\sqrt{3}\right)}{\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}+\dfrac{4\left(\sqrt{7}+\sqrt{3}\right)}{\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}\\ =\dfrac{4\left(\sqrt{7}-\sqrt{3}\right)}{7-3}+\dfrac{4\left(\sqrt{7}+\sqrt{3}\right)}{7-3}\\ =\dfrac{4\left(\sqrt{7}-\sqrt{3}\right)}{4}+\dfrac{4\left(\sqrt{7}+\sqrt{3}\right)}{4}\\ =\sqrt{7}-\sqrt{3}+\sqrt{7}+\sqrt{3}\\ =2\sqrt{7}\)
@seven
Với bài này bạn áp dụng công thức : \(\sqrt{x^2}= \left|x\right|\); Nếu \(x\ge0\) thì \(\left|x\right|=x\)
Nếu \(x< 0\) thì \(\left|x\right|=-x\)
Áp dụng :
\(A=\sqrt{7-4\sqrt{3}}-\sqrt{7+4\sqrt{3}}=\sqrt{\left(2-\sqrt{3}\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}=\left(2-\sqrt{3}\right)-\left(2+\sqrt{3}\right)=-2\sqrt{3}\)
điều kiện :a<=0
\(A^2=7-4\sqrt{3}-2\sqrt{\left(7-4\sqrt{3}\right)\left(7+4\sqrt{3}\right)}+7+4\sqrt{3}\)
\(=14-2\sqrt{49-48}=12\)
\(\Rightarrow A=\sqrt{12}\left(LOẠI\right)HAYA=-\sqrt{12}\left(NHẬN\right)\)
\(A=\left(13-4\sqrt{3}\right)\left(7+4\sqrt{3}\right)-8\sqrt{20+2\sqrt{43+24\sqrt{3}}}\) \(A=\left(6+7-4\sqrt{3}\right)\left(7+4\sqrt{3}\right)-8\sqrt{20+2\sqrt{\left(16+2.4.3\sqrt{3}+27\right)}}\)
\(A=6\left(7+4\sqrt{3}\right)+\left(7-4\sqrt{3}\right)\left(7+4\sqrt{3}\right)-8\sqrt{20+2\sqrt{\left(4+3\sqrt{3}\right)^2}}\)Trong căn là hằng đẳng thức (a+b)^2
\(A=42+24\sqrt{3}+7^2-\left(4\sqrt{3}\right)^2-8\sqrt{20+2\left(4+3\sqrt{3}\right)}\) sử dụng hằng đẳng thức a^2 -b^2\(A=43+24\sqrt{3}-8\sqrt{20+8+2.3\sqrt{3}}\)
\(A=43+24\sqrt{3}-8\sqrt{1+2.3\sqrt{3}+27}\)trong căn tiếp tục là hằng đẳng thức (a+b)^2\(A=43+24\sqrt{3}-8\sqrt{\left(1+3\sqrt{3}\right)^2}\)
\(A=43+24\sqrt{3}-8\left(1+3\sqrt{3}\right)\)
\(A=35\)
chúc bạn thành công nhé
mk không chép đề
\(\sqrt{4-4\sqrt{3}+3}\) + \(\sqrt{3-2\sqrt{3}+1}\)
=\(\sqrt{\left(2-\sqrt{3}\right)^2}\)+ \(\sqrt{\left(\sqrt{3}-1\right)^2}\)
= 2-\(\sqrt{3}\) +\(\sqrt{3}\) -1 =1
\(A=43+24\sqrt{3}-8\sqrt{20+2\sqrt{\left(3\sqrt{3}+4\right)^2}}\)
\(=43+24\sqrt{3}-8\sqrt{20+2\left(3\sqrt{3}+4\right)}\)
\(=43+24\sqrt{3}-8\sqrt{28+6\sqrt{3}}\)
\(=43+24\sqrt{3}-8\sqrt{\left(3\sqrt{3}+1\right)^2}\)
\(=43+24\sqrt{3}-8\left(3\sqrt{3}+1\right)\)
\(=43-8=35\)
\(=\sqrt{4\sqrt{3}+2\left(2-\sqrt{3}\right)}\)
\(=\sqrt{4\sqrt{3}+4-2\sqrt{3}}\)
\(=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)