Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, (4x-3)(3x+2)-(6x+1)(2x-5)+1
=12x2-8x-9x+6-12x2+30x-2x+5+1
=11x+12
b, (3x+4)2+(4x-1)2+(2+5x)(2-5x)
=9x2+24x+16+16x2-8x+1+4-25x2
=16x+21
c, (2x+1)(4x22x+1)+(2-3x)(4+6x+9x2)-9
=8x3+1+8-27x3-9
=-19x3
câu c
\(C=\left(2x-1\right)^3+\left(2x-1\right)\left(4x^2+2x+1\right)\)
\(C=\left(2x-1\right)\left[\left(2x-1\right)^2+\left(4x^2+2x+1\right)\right]\)
\(C=\left(2x-1\right)\left[\left(4x^2-4x+1\right)+\left(4x^2+2x+1\right)\right]\)
\(C=2\left(2x-1\right)\left[4x^2-x+1\right]\)
Bài 1:
a) \(6x\left(3x+15\right)-2x\left(9x-2\right)=17\) (1)
\(\Leftrightarrow18x^2+90x-18x^2+4x=17\)
\(\Leftrightarrow94x=17\)
\(\Leftrightarrow x=\dfrac{17}{94}\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{17}{94}\right\}\)
b) \(\left(15x-2x\right)\left(4x+1\right)-\left(13x-4x\right)\left(2x-3\right)-\left(x-1\right)\left(x+2\right)+x+2=52\)
\(\Leftrightarrow\left(60x^2+15x-8x^2-2x\right)-\left(26x^2-39x-8x^2+12x\right)-\left(x^2+2x-x-2\right)+x+2=52\)
\(\Leftrightarrow60x^2+15x-8x^2-2x-26x^2+39x+8x^2-12x-x^2-2x+x+2+x+2=52\)
\(\Leftrightarrow33x^2+40x+4=52\)
\(\Leftrightarrow33x^2+40x=48\)
...
Bài 1 có ng làm rồi nên mình không làm nx nhé.
2) a) Rút gọn
P=\(3x\left(4x+1\right)+5x^2-4x\left(3x+9\right)+x\left(5x-5x^2\right)\)
P= \(12x^2+3x+5x^3-12x^3-36x+5x^2-5x^3\)
P= \(-33x\)
b) |x| = 2
\(\Rightarrow\left\{{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Với x = 2 \(\Rightarrow\) P = -33 . 2 = -66
Với x = -2 \(\Rightarrow\) P = -33 . (-2) = 66
c) Để P = 2017 \(\Rightarrow\) -33x = 2017 \(\Rightarrow\) x = \(-\dfrac{2017}{33}\)
Bài 3: Giải
f(x) = \(\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
f(x) = \(\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
f(x) = \(\left(x^2+5x\right)^2-6^2\) ( Hằng đẳng thức số 3 )
f(x) = \(\left(x^2+5x\right)^2-36\ge-36\) với mọi x
Vậy \(Min_{f\left(x\right)}\) = -36 khi x = 0 hoặc x = -5
bài 1
a) \(7x\left(5x-1\right)+5x-1=\left(5x-1\right)\left(7x+1\right)\)
b) \(4xy-4x^2-y^2+25=25-\left(4x^2-4xy+y^2\right)\)
\(=5^2-\left(2x-y\right)=\left(5-2x+y\right)\left(5+2x-y\right)\)
c) \(2x^2-2y+xy-4x=\left(2x^2+xy\right)-\left(2y+4x\right)\)
\(=x^2\left(2x+y\right)-2\left(2x+y\right)=\left(2x+y\right)\left(x^2-2\right)\)
d) \(3x^2-7x+2=3x^2-6x-x+2\)
\(=3x\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-2\right)\left(3x-1\right)\)
bài 2
a) * Rút gọn:
\(Q=3\left(2x-1\right)^2+2\left(2x+3\right)\left(x-1\right)-\left(x-3\right)\left(x+3\right)\)
\(Q=\left[3\left(4x^2-4x+1\right)\right]+\left[2\left(2x^2-2x+3x-3\right)\right]-\left(x^2-9\right)\)
\(Q=\left(12x^2-12x+3\right)+\left(4x^2-4x+6x-6\right)-\left(x^2-9\right)\)
\(Q=12x^2-12x+3+4x^2-4x+6x-6-x^2+9\)
\(Q=15x^2-10x+6=5x\left(3x-2\right)+6\)
Thế x = 2 vào biểu thức Q ta được:
\(Q=5\cdot2\left(3\cdot2-2\right)+6=46\)
b) \(Q=5x\left(3x-2\right)+6=6\)
\(\Leftrightarrow5x\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
\(a,\left(6x+1\right)\left(x+2\right)-2x\left(3x-5\right)\)
\(=6x^2+12x+x+2-6x^2+10x\)
\(=23x+2\)
a) (6x + 1)(x + 2) - 2x(3x - 5)
= 6x2 + 12x + x + 2 - 6x2 + 10x
= (6x2 - 6x2) + (12x + x + 10x) + 2
= 23x + 2
b) (2x - 1)2 - (2x - 3)(2x + 3)
= 4x2 - 4x + 1 - 4x2 + 9
= (4x2 - 4x2) - 4x + (1 + 9)
= -4x + 10
c) (2x - 3)3 - (3x + 1)(5 - 4x) - 16x2
= 8x3 - 36x2 + 54x - 15x + 12x2 - 5 + 4x - 16x2
= 8x3 - (36x2 - 12x2 + 16x2) + (54x - 15x + 4x) - 5
= 8x3 - 40x2 + 43x - 5
d) (3x + 2) - (x - 5) - x(3x - 13)
= 3x + 2 - x + 5 - 3x2 + 13x
= (3x - x + 13x) + (2 + 5) - 3x2
= 15x + 7 - 3x2
Z đó
2x(5x-2)-4x(5x 2-2x-1)
= 10x2-4x-20x3+8x2+4x
= (10x2+8x2)+(-4x+4x)-20x3
= 18x2-20x3