Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{5\left(\sqrt{4+2\sqrt{3}}+\sqrt{6-2\sqrt{5}}-\frac{\sqrt{5}}{2}\right)^2+\left(\sqrt{4-2\sqrt{3}}+\sqrt{6-2\sqrt{5}}-\frac{\sqrt{3}}{2}\right)^2}{2}\)
\(=\frac{5\left(\sqrt{3}+\frac{\sqrt{5}}{2}\right)^2+\left(\sqrt{5}+\frac{\sqrt{3}}{2}-2\right)^2}{2}\)
\(=\frac{\frac{85}{4}+5\sqrt{15}+\frac{39}{4}+\sqrt{15}-2\sqrt{3}-4\sqrt{5}}{2}=\frac{31+3\sqrt{15}-4\sqrt{5}-2\sqrt{3}}{2}\)
a)
\((\sqrt{3}-2\sqrt{12}+2\sqrt{4})(\sqrt{27}+\sqrt{144}-2\sqrt{16})\)
\(=(\sqrt{3}-4\sqrt{3}+4)(3\sqrt{3}+12-8)\)
\(=(-3\sqrt{3}+4)(3\sqrt{3}+4)=4^2-(3\sqrt{3})^2=16-27=-11\)
b)
\((2\sqrt{5}+2\sqrt{3})^2-4\sqrt{60}\)
\(=(2\sqrt{5})^2+2.2\sqrt{5}.2\sqrt{3}+(2\sqrt{3})^2-8\sqrt{15}\)
\(=32+8\sqrt{15}-8\sqrt{15}=32\)
c)
\(\sqrt{6}(3\sqrt{12}-4\sqrt{3}+\sqrt{48}-5\sqrt{6})\)
\(=3\sqrt{72}-4\sqrt{18}+\sqrt{6.48}-5.\sqrt{36}\)
\(=18\sqrt{2}-12\sqrt{2}+12\sqrt{2}-30=18\sqrt{2}-30\)
d)
\((\sqrt{2}-\sqrt{3})(\sqrt{6}+\sqrt{2})(\sqrt{2}+\sqrt{3})\)
\(=(\sqrt{2}-\sqrt{3})(\sqrt{2}+\sqrt{3})(\sqrt{6}+\sqrt{2})\)
\(=(2-3)(\sqrt{6}+\sqrt{2})=-(\sqrt{6}+\sqrt{2})\)
e) Biểu thức bên trong căn lớn âm nên biểu căn bậc 2 không có nghĩa
f)
\((\frac{2}{\sqrt{3}-1}+\frac{3}{\sqrt{3}-2}+\frac{15}{3-\sqrt{3}}).\frac{1}{\sqrt{3}+5}\)
\(=(\frac{2\sqrt{3}+15}{3-\sqrt{3}}+\frac{3}{\sqrt{3}-2}).\frac{1}{\sqrt{3}+5}\)
\(=\frac{2\sqrt{3}+15)(\sqrt{3}-2)+3(3-\sqrt{3})}{(3-\sqrt{3})(\sqrt{3}-2)}.\frac{1}{\sqrt{3}+5}\)
\(=\frac{-15+8\sqrt{3}}{(-9+5\sqrt{3})(\sqrt{3}+5)}=\frac{-15+8\sqrt{3}}{-30+16\sqrt{3}}=\frac{-15+8\sqrt{3}}{2(-15+8\sqrt{3})}=\frac{1}{2}\)
\(5\left(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}-\sqrt{\frac{5}{2}}\right)^2+\left(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}-\sqrt{\frac{3}{2}}\right)^2\)
\(=\frac{5}{2}\left(\sqrt{4+2\sqrt{3}}+\sqrt{6-2\sqrt{5}}-\sqrt{5}\right)^2+\frac{1}{2}\left(\sqrt{4-2\sqrt{3}}+\sqrt{6+2\sqrt{5}}-\sqrt{3}\right)^2\)
\(=\frac{5}{2}\left(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{5}\right)^2+\frac{1}{2}\left(\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{3}\right)^2\)
\(=\frac{5}{2}\left(\sqrt{3}+1+\sqrt{5}-1-\sqrt{5}\right)^2+\frac{1}{2}\left(\sqrt{3}-1+\sqrt{5}+1-\sqrt{3}\right)^2\)
\(=\frac{5}{2}\left(\sqrt{3}\right)^2+\frac{1}{2}\left(\sqrt{5}\right)^2=\frac{15}{2}+\frac{5}{2}=\frac{20}{2}=10\)