\(E=1+2+2^2+2^3+....+2^{2014}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2016

E = 1 + 2 + 22 + 23 + .... + 22014

2E = 2 + 22  + 23  + 24 + .... + 22015

2E - E = (2 + 22 + 23 + 24 + .... + 22015) - (1 + 2 + 22 + 23 + ..... + 22014)

E = 22015 - 1

Ủng hộ mk nha !!! ^_^

2 tháng 8 2016

\(E=1+2+2^2+2^3+...+2^{2014}\)

\(2E=2+2^2+2^3+2^4+...+2^{2014}+2^{2015}\)

\(2E-E=\left(2+2^2+2^3+...+2^{2015}\right)-\left(1+2+2^2+...+2^{2014}\right)\)

\(E=2^{2015}-1\)

22 tháng 5 2017

a. \(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2014}}\)

\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{2013}}\)

\(\Rightarrow3A-A=1-\frac{1}{3^{2014}}\)

\(\Rightarrow2A=1-\frac{1}{3^{2014}}\)

\(\Rightarrow A=\left(1-\frac{1}{3^{2014}}\right):2=\frac{1}{2}-\frac{1}{3^{2014}.2}=\frac{3^{2014}-1}{3^{2014}.2}\)

b.\(B=\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2014}}\)

\(\Rightarrow2B=1+\frac{1}{2^2}+....+\frac{1}{2^{2013}}\)

\(\Rightarrow2B-B=1-\frac{1}{2^{2014}}\)

\(\Rightarrow B=1-\frac{1}{2^{2014}}\)

26 tháng 7 2016

=> 2S=........( cộng thêm 1 vào mỗi mũ)

=>2S-S=........( trừ những phần giống nhau cho nhau, còn 2 mũ 2015-2 )

=>S=2 mũ 2015-2 

26 tháng 7 2016

\(S=2+2^2+2^3+...+2^{2013}+2^{2014}\)

\(2S=2^2+2^3+2^4+...+2^{2014}+2^{2015}\)

\(2S-S=\left(2^2+2^3+...+2^{2014}+2^{2015}\right)-\left(2+2^2+2^3+...+2^{2014}\right)\)

\(S=2^{2015}-2\)

Ủng hộ mk nha !!! ^_^

2 tháng 10 2019

2D = 2101 - 2100 + 299 -...+2

2D+D= 2101+1

D=...

Bạn tự tính nhé nhớ k cho mình đấy

11 tháng 5 2015

Bạn nên nhớ các bài dạng dãy số này, sau này sẽ cần dùng rất nhiều:

 Ta có:  \(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}\)

          \(2A=2\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}\right)\)

          \(2A=2+1+\frac{1}{2}+..+\frac{1}{2^{2013}}\)

 \(2A-A=\left(2+1+\frac{1}{2}+..+\frac{1}{2^{2013}}\right)\)\(-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}\right)\)

             \(A=2+\left(1+\frac{1}{2}+..+\frac{1}{2^{2013}}\right)\)\(-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2013}}\right)-\frac{1}{2^{2014}}\)

             \(A=2-\frac{1}{2^{2014}}\)

11 tháng 5 2015

Ta có:\(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}\)

\(\Rightarrow2A=2+1+\frac{1}{2}+...+\frac{1}{2^{2013}}\)

\(\Leftrightarrow2A-A=\left(2+1+\frac{1}{2}+...+\frac{1}{2^{2013}}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2^{2014}}\right)\)

\(=2-\frac{1}{2^{2014}}=\frac{2^{2015}-1}{2^{2014}}\)

Vậy \(A=\frac{2^{2015}-1}{2^{2014}}\)

3 tháng 2 2020

Đặt \(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{2}{2004.2005}\)

Ta có: \(A=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+...+\frac{2}{2004.2005}\)

\(A=2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{2004.2005}\right)\)

\(A=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{2004.2005}\right)\)

\(A=2.\left(\frac{1}{2}-\frac{1}{2005}\right)\)

\(A=\frac{2003}{2005}\)

3 tháng 2 2020

bn ơi bn chưa nhân với 2

25 tháng 6 2016

A =\(\frac{1}{1+2}\)+\(\frac{1}{1+2+3}\)+...+\(\frac{1}{1+2+3+4...+2014}\)

\(\Rightarrow A=\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{2029105}\)

\(\Rightarrow2A=2\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{2029105}\right)\)

\(\Rightarrow2A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{4058210}\)

\(\Rightarrow2A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2014.2015}\)

\(\Rightarrow2A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)

\(\Rightarrow2A=\frac{1}{2}-\frac{1}{2015}\)

\(\Rightarrow2A=\frac{2013}{4030}\)

\(\Rightarrow A=\frac{2013}{8060}\)

1 tháng 7 2016

ngài Kiệt ღ ๖ۣۜLý๖ۣۜ   đúng là không ái sánh bằng sự gian xảo này